第二章 逻辑代数的基本运算…………………………………………………………… 2.1 逻辑代数 2.1.1 与运算…………………………………………………………………… 2.1.2 或运算…………………………………………………………………… 2.1.3 非运算…………………………………………………………………… 2.1.4 几种常见的复合逻辑关系………………………………………………… 2.2 逻辑函数及其表示方法……………………………………………………… 2.3 逻辑代数的基本定律和恒等式………………………………………………… 2.3.1 逻辑代数的基本定律和恒等式…………………………………………… 2.3.2 逻辑代数的三个规则……………………………………………………… 2.3.3 逻辑函数的代数变换与化简法……………………………………………… 2.4 逻辑函数的卡诺图化简法…………………………………………………… 2.4.1 最小项的定义和性质……………………………………………………… 2.4.2 逻辑函数的卡诺图表达法………………………………………………… 2.4.3 利用卡诺图化简逻辑函数………………………………………………… 本章小结…………………………………………………………………………… 第二章 逻辑代数的基本运算 本章要点: 基本逻辑关系与逻辑运算 逻辑代数基本定律与基本规则 逻辑函数的表示方法 逻辑函数的变换与化简 2.1 逻辑代数 逻辑代数又称布尔代数,其基本思想是 19世纪英国数学家乔治.布尔首先提出的。所谓逻辑就是事物因果之间所遵循的规律。为了避免用冗繁的文字来描述逻辑问题,逻辑代数采用逻辑变量和一套运算符组成逻辑函数表达式来描述食物的因果关系。它是用数学的方法来研究、证明、推理放逻辑问题的一种数学工具。逻辑代数虽然和普通代数一样也是用字母表示变量,但是两种代数中的变量含义是完全不同的,逻辑代数中的每个变量(逻辑变量)只有 0和 1两种取值。0和 1不再表示数量的大小,而是表示对立的两种逻辑状态。例如,电灯的亮与灭、电动机的工作与停止。 在数字电路中,输入的信号是“条件”,输出的信号是“结果”,因此输入、输出信号之间存在一定的因果关系,这种因果关系称为逻辑关系。描述逻辑关系可以用语句、逻辑表达式、图形和表格等来描述,描述逻辑关系的表格又称为真值表。表示逻辑运算所用的规定的图形符号称为逻辑符号。逻辑代数中有三种基本运...