Name:___________________________________Identityno:_________________________Date:__________________SeatNo:_________BCAACADEMYSCHOOLOFBUILDING&DEVELOPMENTSINGAPOREMATHEMATICSSCREENINGTESTSetA1.5HOURSInstructionstocandidates1.Donotturnoverthispageuntilyouaretoldtodoso.2.Checkthatyouhavethecorrectexampaper,numberofpagesandquestions.3.ThispaperconsistsofTEN(10)questions(100marks).AnswerALLquestions4.WriteyourName,ICNO.andSeatNo.onthiscoverpage.5.AllanswersaretobewritteninTHISbooklet.6.DoNOTtearoutanypage.ThisbookletisthepropertyofBCAAcademyandmustnotberemovedfromthetestcentre.7.Mobilephonesaretobeswitchedoffandelectronicequipmentsarenotallowedtobeused.8.Candidatesaretobringtheirownnon-programmablescientificcalculator.Unlessotherwisestated,leaveyouranswersin3significantfigures.Unlessthequestionsrequiretheanswersintermofπ,thecalculatorvalueforπ=3.142shouldbeused.Ifworkingisneededforanyquestion,itmustbeshownwiththeanswer.Omissionofessentialworkingwillresultinlossofmarks.1.Simplifythefollowingexpressionsusingfractionsonly.Showyourworkingclearly.(a)(−1517)0¿(34)1(5marks)(b)ﻩ(0.16)12¿)2.961)−12(5marks)(a)(−1517)0¿(34)1=34(b)(0.16)12¿(12.96)−12=19ForOfficialUse:TestCentre:TestDate:Marks(/100):Marker:Checker:ﻩﻩﻩﻩﻩﻩﻬ2.(a)ﻩGivenif27x+y=81and3x−y=27,find9x2−y2.(5marks)(b)ﻩ(2.1x1032z)2−3(6.5x103z−1)=2.46x10−5,findz.(5marks)(a)9x2−y2=6561(b)z=53ﻬ3.(a)Thefollowingfigureshowsaright-angledtriangleanditsdimensions.Findx.(4marks)(x+3)2+(2x−1)2=(3x−2)2X=7±√734ﻩ(x+3)cm(2x-1)cm(3x-2)cmﻬ3.(b)Apencilcasecontains2green,6redand12orangepens.Apenispickedoutatrandomandreplaced.Asecondpenisthenpickedoutatrandomandnotreplaced.Athirdpenisfinallypickedoutatrandom.Findtheprobabilitythatallthreepenspickedareofdifferentcolours.(6marks)P=544754.(a)Thediagramshowsfourpoints,A,B,C,D,onlevelground.ItisgiventhatDisdueNorthofC,∠ABC=52°,∠ACD=120°and∠ACB=90°.ﻩﻩFind:(i)ﻩ∠BCD,and(ii)BearingofBfromAﻩ(5marks)ﻩﻩ(i)∠BCD=150ﻩ(ii)eastbynorth18ﻬCNorthDAB1205221m62m66°23°RQ4(b)GiventhatAD=BE=12m.∠BEC=55°and∠ADC=68°.FindlengthAB.(5marks)ﻩﻩﻩﻩAB=12×(sin68°−sin55°)ﻬ5.Inthediagram,PSTisastraightline,QR=21mandRS=62m.TheangleofdepressionofRfromQis23.TheangleofdepressionofTfromRis66.ﻩ(a)HowmuchhigherisQthanR?(b)Calculate∠RST.(c)CalculatethelengthofST.(10marks)68°55°ABDECH=(21×sin23°)m∠RST=67°L=(62×sin47°sin66°)mﻩﻩﻬ6.OABandORSaretwosectorswithcommoncentreOandradiiOAandORrespectively.PQRSarectangleinwhichPQ=18cmandQR=rcm.RSistangenttothearcANBatN,PO=OQandMN=4cm.ﻩﻩﻩ(10marks)∠ROS=π-arcsin93609409L=(814×(π-arcsin93609409)+8)mS=812×(π−arcsin93609409)Calculate(a)∠ROSinradians,(b)theperimeteroftheshadedregion,and(c)theshadedarea.Hint:Lengthofarc,S=rθAreaofsector=12r2θwhere,r=radiusθ=angleofthearc(inradian)7.Inthediagram,thepointsA,B,Can...