1 第三章 中值定理与导数的应用 从第二章第一节的前言中已经知道,导致微分学产生的第三类问题是“求最大值和最小值”. 此类问题在当时的生产实践中具有深刻的应用背景,例如,求炮弹从炮管里射出后运行的水平距离(即射程),其依赖于炮筒对地面的倾斜角(即发射角). 又如,在天文学中,求行星离开太阳的最远和最近距离等. 一直以来,导数作为函数的变化率,在研究函数变化的性态中有着十分重要的意义,因而在自然科学、工程技术以及社会科学等领域中得到广泛的应用. 在第二章中,我们介绍了微分学的两个基本概念—导数与微分及其计算方法. 本章以微分学基本定理—微分中值定理为基础,进一步介绍利用导数研究函数的性态,例如判断函数的单调性和凹凸性,求函数的极限、极值、最大(小)值以及函数作图的方法,最后还讨论了导数在经济学中的应用. 第一节 中值定理 中值定理揭示了函数在某区间的整体性质与该区间内部某一点的导数之间的关系,因而称为中值定理. 中值定理既是用微分学知识解决应用问题的理论基础,又是解决微分学自身发展的一种理论性模型, 因而称为微分中值定理. 本节主要内容 1 罗尔定理 2 拉格朗日中值定理 3 柯西中值定理 讲解提纲: 一、罗尔定理:在闭区间[a, b]上连续;在开区间(a, b)内可导;在区间端点的函数值相等, 即).()(bfaf 结论:在(a, b)内至少存在一点),(ba 使得 .0)( f 注:罗尔定理的三个条件是十分重要的,如果有一个不满足,定理的结论就可能不成立. 分别举例说明之. 罗尔定理中)()(bfaf这个条件是相当特殊的,它使罗尔定理的应用受到限制. 拉格朗日在罗尔定理的基础上作了进一步的研究,取消了罗尔定理中这个条件的限制,但仍保留了其余两个条件,得到了在微分学中具有重要地位的拉格朗日中值定理. 二、拉格朗日中值定理:在闭区间[a, b]上连续;在开区间(a, b)内可导. 结论:在(a, b)内至少存在一点),(ba 使得))(()()(abfafbf 拉格朗日中值公式反映了可导函数在],[ ba上整体平均变化率与在),(ba内某点 处函数的局部变化率的关系. 若从力学角度看,公式表示整体上的平均速度等于某一内点处的瞬时速度. 因此,拉格朗日中值定理是联结局部与整体的纽带. 拉格朗日终值定理可改写为).10()(0xxxfy 称为有限增量公式. 拉格朗日中值定理在微分学中占有重要地位,有时也称这个定理为微分中值定理. 在某些问题中,当自变量 x 取得...