光纤光栅的发展历史 在光纤中掺入锗元素后光纤就具有光敏性,通过强激光照射会使其纤芯内的纵向折射率呈周期性变化,从而形成光纤光栅。光纤光栅的作用实际上是在纤芯内形成一个窄带滤波器。通过选择不同的参数使光有选择性地透射或反射。 1978 年,Hill 等首次发现掺锗光纤具有光敏效应,随后采用驻波法制造了可以实现反向模式间耦合的光纤光栅——布拉格光栅。但是它对光纤的要求很高——掺锗量高,纤芯细。其次,该光纤的周期取决于氩离子激的光波长,且反射波的波长范围很窄,因此其实用性受到限制。 1988 年,Meltz 等采用相干的紫外光形成的干涉条纹侧面曝光氢载光纤写入布拉格光栅的全息法制作光光栅技术。与驻波法相比,全息法可以通过选择激光波长或改变相干光之间的夹角在任意波段写入光纤布拉格光栅,推动了光纤光栅制作技术的发展。全息法对光源的相干性要求很严,同时对周围环境的稳定性也有较高的要求,执行起来较为困难。 1993 年,Hill 等使用相位掩膜法来制作光栅,即用紫外线垂直照射相位掩膜形成的衍射条纹曝光氢载光纤。由于这种方法制作的光栅仅由相位光栅的周期有关而与辐射光的波长无关,所以对光源的相干性的要求大大降低。该方法对写入装置的复杂程度要求有所降低,对周围环境也要求较低,这使得光栅的批量生产成为可能,极大地推动了光纤光栅在通信领域的应用。 自 1978 年首个光纤光栅问世以来,光纤光栅的制作方法和理论研究都获得了飞速发展,这促进了其在通信领域的推广和应用。在光纤布拉格光栅的基础上,人们研制出特殊光栅,比如啁啾光纤光栅,高斯变迹光栅升余弦变迹光栅,相移光纤光栅和倾斜光纤光栅等。1995年,光纤光栅实现了商品化。1997 年,光纤光栅成为光波技术中的标准器件。 光栅光纤的应用 光想光上具有体积小,熔接损耗小,与光纤全兼容,抗电磁干扰能力强,化学稳定和电绝缘等特点,这使得它在光纤通信和光信息处理等领域得到了广泛的应用。在光纤通信中,光纤光栅可以用于光纤激光器、光纤放大器、光栅滤波器、色散补偿器、波分复用器,也可以用于全光波长路由和光交换等。它为全光通信中的许多关键问题提供了有效的解决方案。 光纤光栅用作激光器。光栅具有窄带滤波的功能,这可以使其实现稳定的高功率的线性腔和环形腔激光输出。光纤布拉格光栅的波长选择连续可调、调谐范围大、线宽窄、输出功率高和相对强度噪声低等优点。 光纤光栅用作干涉仪。将光纤布拉格光栅和光纤耦合器...