统计学习题 二、简答 1.简述描述一组资料的集中趋势和离散趋势的指标。 集中趋势和离散趋势是定量资料中总体分布的两个重要指标。 (1)描述集中趋势的统计指标:平均数(算术均数、几何均数和中位数)、百分位数(是一种位置参数,用于确定医学参考值范围,P50 就是中位数)、众数。算术均数:适用于对称分布资料,特别是正态分布资料或近似正态分布资料; 几何均数:对数正态分布资料(频率图一般呈正偏峰分布)、等比数列;中位数:适用于各种分布的资料,特别是偏峰分布资料,也可用于分布末端无确定值得资料。 (2)描述离散趋势的指标:极差、四分位数间距、方差、标准差和变异系数。四分位数间距:适用于各种分布的资料,特别是偏峰分布资料,常把中位数和四分位数间距结合起来描述资料的集中趋势和离散趋势。方差和标准差:都适用于对称分布资料,特别对正态分布资料或近似正态分布资料,常把均数和标准差结合起来描述资料的集中趋势和离散趋势;变异系数:主要用于量纲不同时,或均数相差较大时变量间变异程度的比较。 2. 举例说明变异系数适用于哪两种形式的资料,作变异程度的比较? 度量衡单位不同的多组资料的变异度的比较。例如,欲比较身高和体重何者变异度大,由于度量衡单位不同,不能直接用标准差来比较,而应用变异系数比较。 3. 试比较标准差和标准误的关系与区别。 区别:⑴标准差 S:①意义:描述个体观察值变异程度的大小。标准差小,均数对一组观察值得代表性好;②应用:与均数结合,用以描述个体观察值的分布范围,常用于医学参考值范围的估计;③与n 的关系:n 越大,S 越趋于稳定;⑵标准误SX:①意义:描述样本均数变异程度及抽样误差的大小。标准误小,用样本均数推断总体均数的可靠性大;②应用于均数结合,用以估计总体均数可能出现的范围以及对总体均数作假设检验;③与n 的关系:n 越大,SX 越小。 联系:①都是描述变异程度的指标;②由SX=s/n-1 可知,SX 与S 成正比。n 一定时,s越大,SX 越大。 4. 简述应用相对数时的注意事项。 应用相对数应该注意:①防止概念混淆,避免以比代率的错误现象;②计算相对数时分母应有足够数量,如果例数较少会使相对数波动较大,应该使用绝对数;③正确的计算频率(或强度)指标的合计值。当分组的资料需要合并起来估计频率(或强度)时,应将各组频率的分子相加作为合并估计的分子,各组的分母相加作为合并估计的分母;④频率型指标的解释要...