精品文档---下载后可任意编辑教学目标:1、知道一元二次方程的定义,能熟练地把一元二次方程整理成一般形式(≠0)2、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。3、会用试验的方法估量一元二次方程的解。重点难点:1.一元二次方程的意义及一般形式,会正确识别一般式中的“项”及“系数”。2.理解用试验的方法估量一元二次方程的解的合理性。教学过程:一做一做:1.问题一绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为 900 平方米的一块长方形绿地,并且长比宽多 10 米,那么绿地的长和宽各为多少?分 析:设长方形绿地的宽为 x 米,不难列出方程x(x+10)=900整理可得 x2+10x-900=0. (1)2.问题 2学校图书馆去年年底有图书 5 万册,估计到明年年底增加到万册.求这两年的年平均增长率.解:设这两年的年平均增长率为 x,我们知道,去年年底的图书数是 5 万册,则今年年底的图书数是 5(1+x)万册;同样,明年年底的图书数又是今年年底的(1+x)倍,即 5(1+x)(1+x)=5(1+x)2万册.可列得方程5(1+x)2=7.2,整理可得 5x2+10x-2.2=0. (2)3.思考、讨论这样,问题 1 和问题 2 分别归结为解方程(1)和(2).显然,这两个方程都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?(学生分组讨论,然后各组沟通)共同特点:(1)都是整式方程(2)只含有一个未知数(3)未知数的最高次数是 2二、一元二次方程的概念上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是 2,这样的方程叫做一元二次方程).通常可写成如下的一般形式:ax2+bx+c=0(a、b、c 是已知数,a≠0)。其中叫做二次项,叫做二次项系数;叫做一次项,叫做一次项系数,叫做常数项。.三、例题讲解与练习巩固1.例 1 下列方程中哪些是一元二次方程?试说明理由。(1)(2)(3)(4)2.例 2 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:1) 2)(x-2)(x+3)=8 3)说明:一元二次方程的一般形式(≠0)具有两个特征:一是方程的右边为 0;二是左边的二次项系数不能为 0。此外要使学生意识到:二次项、二次项系数、一次项、一次项系数、常数项都是包括符号的。3.例 3 方程(2a—4)x2—2bx+a=0, 在什么条件下此方程为一...