精品文档---下载后可任意编辑两类非线性偏微分方程组正解的正则性,对称性和单调性的开题报告题目:两类非线性偏微分方程组正解的正则性、对称性和单调性摘要:本文讨论了两类非线性偏微分方程组正解的正则性、对称性和单调性。第一类方程组为二维 Schrodinger 方程,它在量子力学、数学物理和非线性分析等领域有广泛的应用。我们讨论了具有能量凸函数和带有奇异项的初始数据的正解的局部存在性和全局存在性,并对正解的稳定性和单调性进行了分析。第二类方程组为 Korteveg-de Vries 方程组,它在水波、声波、气体动力学等领域有广泛应用。我们讨论了具有有界变差解和带有奇异项的初始数据的正解的全局存在性和渐近行为,并证明了其存在唯一性和单调性。本文的讨论对相关领域的理论和应用具有一定的参考价值。关键词:非线性偏微分方程组;正解;正则性;对称性;单调性;Schrodinger 方程;Korteveg-de Vries 方程组Abstract:This paper studies the regularity, symmetry, and monotonicity of the positive solutions of two types of nonlinear partial differential equation systems. The first type of equation system is the two-dimensional Schrodinger equation, which has wide applications in quantum mechanics, mathematical physics, and nonlinear analysis. We study the local and global existence of positive solutions with energy-convex functions and singular terms in the initial data, and analyze the stability and monotonicity of positive solutions. The second type of equation system is the Korteveg-de Vries equation system, which has wide applications in water waves, sound waves, gas dynamics, and other fields. We study the global existence and asymptotic behavior of positive solutions with bounded variation and singular terms in the initial data, and prove their uniqueness and monotonicity. The research in this paper has some reference value for the theory and application of related fields.Keywords: nonlinear partial differential equation system; positive solution; regularity; symmetry; monotonicity; Schrodinger equation; Korteveg-de Vries equation system