例 1 题图例 2 题图BACD第 1 题图ABCD精品文档---下载后可任意编辑考点 1 特别的平行四边形的性质与判定1.矩形的定义、性质与判定(1)矩形的定义:有一个角是直角的平行四边形是矩形。(2)矩形的性质:矩形的对角线_________;矩形的四个角都是________角。矩形具有________的一切性质。矩形是轴对称图形,对称轴有_____________条,矩形也是中心对称图形,对称中心为_____________的交点。矩形被对角线分成了____________个等腰三角形。(3)矩形的判定有一个是直角的平行四边形是矩形;有三个角是_____________的四边形是矩形;对角线__ ___的平行四边形是矩形。温馨提示:矩形的对角线是矩形比较常用的性质,当对角线的夹角中,有一个角为 60 度时,则构成一个等边三角形;在判定矩形时,要注意利用定义或对角线来判定时,必须先证明此四边形为平行四边形,然后再请一个角为直角或对角线相等。很多同学容易忽视这个问题。2.菱形的定义、性质与判定(1)菱形的定义:有一组邻边相等的平行四边形是菱形。(2)菱形的性质菱形的_______都相等;菱形的对角线互相____ ___,并且每一条对角线______一组对角;菱形也具有平行四边形的一切性质。菱形即是轴对称图形也是中心对称图形,对称轴有__ __条。(3)菱形的面积菱形的面积=底×高,菱形的面积=12 ab,其中 a,b 分别为菱形两条对角线的长。菱形被对角线分成了 4 个全等的直角三角形。(4)菱形的判定:_______都相等的四边形是菱形;对角线______的平行四边形是菱形;有一组邻边相等的平行四边形是菱形。温馨提示:在利用菱形的判定时,也要注意所要证明的四边形是不是平行四边形,而你用的判定定理需不需要证明它是平行四边形,有对角线时,通常考虑利用对角线互相垂直的平行四边形是菱形来证明,否则一般不利用此定理。3.正方形的性质及判定方法(1)正方形的性质:正方形的四个角都是_____________,四条边都_____________;正方形的两条对角线____________,并且互相垂直平分,每条对角线平分一组对角;正方形即是轴对称图形也是中心对称图形。正方形具有平行四边形、矩形、菱形的一切性质。(2)正方形的判定方法:有一组邻边相等的__ __是正方形;对角线互相____的矩形是正方形;有一个角是直角的菱形是正方形;对角线________的菱形是正方形。温馨提示:无论是正方形的性质还是正方形的判定,它的中心思想就是正方形即是矩形,又是菱形,假如都从这个出发,则一...