精品文档---下载后可任意编辑通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。找规律的题目,通常根据一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。揭示的规律,常常包含着事物的序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的神秘。 初中数学考试中,常常出现数列的找规律题,本文就此类题的解题方法进行探究:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第 n 个数可以表示为:a1+(n-1)b,其中 a 为数列的第一位数,b 为增幅,(n-1)b 为第一位数到第 n 位的总增幅。然后再简化代数式 a+(n-1)b。例:4、10、16、22、28……,求第 n 位数。分析:第二位数起,每位数都比前一位数增加 6,增幅都是 6,所以,第 n 位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。如增幅分别为3、5、7、9,说明增幅以同等幅度增加。此种数列第 n 位的数也有一种通用求法。基本思路是:1、求出数列的第 n-1 位到第 n 位的增幅;2、求出第 1 位到第第 n 位的总增幅;3、数列的第 1 位数加上总增幅即是第 n 位数。此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17 增幅为 1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。二 、 基 本 技 巧 (一)标出序列号:找规律的题目,通常根据一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的神秘。例如,观察下列各式数:0,3,8,15,24,……。试按此规律写出的第 100 个数是 100,第 n 个数是 n2−1。解答这一题,可以先找一般规律,然后使用这个规律,计算出第 100 个数。我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,……。序列号: 1,2,3, 4, 5,……。容易发现,已知数的每一项,都等于它的序列号的平方减 1。因此,第 n 项是-1,第 100 项是—1(二)...