精品文档---下载后可任意编辑一、曲线积分与曲面积分的计算方法1.曲线积分与曲面积分的计算方法归纳如下:(1) 利用性质计算曲线积分和曲面积分.(2) 直接化为定积分或二重积分计算曲线或曲面积分(3) 利用积分与路径无关计算对坐标的曲线积分.(4) 利用格林公式计算平面闭曲线上的曲线积分.(5) 利用斯托克斯公式计算空间闭曲线上的曲线积分.(6) 利用高斯公式计算闭曲面上的曲面积分.2. 在具体计算时,常用到如下一些结论:(1)若积分曲线关于轴对称,则其中是在右半平面部分.若积分曲线关于轴对称,则其中是在上半平面部分.(2)若空间积分曲线关于平面对称,则 .(3)若积分曲面关于面对称,则其中是在面上方部分.若积分曲面关于面对称,则其中是在面前方部分.若积分曲面关于面对称,则其中是在面右方部分.(4)若曲线弧,则若曲线弧(极坐标),则若空间曲线弧,则精品文档---下载后可任意编辑(5)若有向曲线弧,则若空间有向曲线弧,则(6)若曲面,则 其中为曲面在面上的投影域.若曲面,则其中为曲面在面上的投影域.若曲面,则其中为曲面在面上的投影域.(7)若有向曲面,则(上“+”下“-”)其中为在面上的投影区域.若有向曲面,则(前“+”后“-”)其中为在面上的投影区域.若有向曲面,则(右“+”左“-”)其中为在面上的投影区域. (8)与路径无关(为内任一闭曲线)(存在)其中是单连通区域,在内有一阶连续偏导数.(9)格林公式其中为有界闭区域的边界曲线的正向,在上具有一阶连续偏导数.(10)高斯公式或 其中为空间有界闭区域的边界曲面的外侧,在上具有一阶连续偏导数,为曲面在点处的法向量的方向余弦. (11)斯托克斯公式其中为曲面的边界曲线,且的方向与的侧(法向量的指向)符合右手螺旋法则,在包含在内的空间区域内有一阶连续偏导数.1. 计算曲线积分或曲面积分的步骤:(1)计算曲线积分的步骤:精品文档---下载后可任意编辑1)判定所求曲线积分的类型(对弧长的曲线积分或对坐标的曲线积分); 2)对弧长的曲线积分,一般将其化为定积分直接计算;对坐标的曲线积分:① 推断积分是否与路径无关,若积分与路径无关,重新选取特别路径积分;②推断是否满足或添加辅助线后满足格林公式的条件,若满足条件,利用格林公式计算(添加的辅助线要减掉);③ 将其化为定积分直接计算.④ 对空间曲线上的曲线积分,推断是否满足斯托克斯公式的条件,若满足条件,利用斯托克斯公式计算;若不满足,将其化为定积分直接...