电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

导数的概念、导数公式与应用

导数的概念、导数公式与应用_第1页
1/13
导数的概念、导数公式与应用_第2页
2/13
导数的概念、导数公式与应用_第3页
3/13
导数的概念及运算 知识点一:函数的平均变化率 (1)概念: 函数中,如果自变量在处有增量,那么函数值y 也相应的有增量△y=f(x0+△x)-f(x0),其比值叫做函数从到+△x 的平均变化率,即。 若,,则平均变化率可表示为,称为函数从到的平均变化率。 注意: ①事物的变化率是相关的两个量的“增量的比值”。如气球的平均膨胀率是半径的增量与体积增量的比值; ②函数的平均变化率表现函数的变化趋势,当取值越小,越能准确体现函数的变化情况。 ③是自变量在处的改变量,;而是函数值的改变量,可以是0。函数的平均变化率是0,并不一定说明函数没有变化,应取更小考虑。 (2)平均变化率的几何意义 函数的平均变化率的几何意义是表示连接函数图像上两点割线的斜率。 如图所示,函数的平均变化率的几何意义是:直线 AB 的斜率。 事实上,。 作用:根据平均变化率的几何意义,可求解有关曲线割线的斜率。 知识点二:导数的概念: 1.导数的定义: 对函数,在点处给自变量x 以增量,函数y 相应有增量。若极限存在,则此极限称为在点处的导数,记作或,此时也称在点处可导。 即:(或) 注意: ①增量可以是正数,也可以是负数; ②导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率。 2.导函数: 如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数, 称这个函数为函数在开区间内的导函数,简称导数。 注意:函数的导数与在点处的导数不是同一概念,是常数,是函数在处的函数值,反映函数在附近的变化情况。 3.导数几何意义: (1)曲线的切线 曲线上一点P(x0,y0)及其附近一点Q(x0+△x,y0+△y),经过点P、Q 作曲线的割线PQ,其倾斜角为当点Q(x0+△x,y0+△y)沿曲线无限接近于点P(x0,y0),即△x→0 时,割线PQ 的极限位置直线PT 叫做曲线在点P 处的切线。 若切线的倾斜角为,则当△x→0 时,割线PQ 斜率的极限,就是切线的斜率。 即:。 (2)导数的几何意义: 函数在点x0的导数是曲线上点()处的切线的斜率。 注意: ①若曲线在点处的导数不存在,但有切线,则切线与轴垂直。 ②,切线与轴正向夹角为锐角;,切线与轴正向夹角为钝角;,切线与轴平行。 (3)曲线的切线方程 如果在点可导,则曲线在点()处的切线方程为: 。 4.瞬时速度: 物体运动的速度等于位移与时间的比,而非匀速直线运动中这个比值是变化的,如何了解非匀速直...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

导数的概念、导数公式与应用

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部