因式分解(平方差公式)同步练习 一、选择题: 1.下列代数式中能用平方差公式分解因式的是( ) A.a2+b2 B.-a2-b2 C.a2-c2-2ac D.-4a2+b2 2.-4+0.09x2分解因式的结果是( ) A.(0.3x+2)(0.3x-2) B.(2+0.3x)(2-0.3x) C.(0.03x+2)(0.03x-2) D.(2+0.03x)(2-0.03x) 3.已知多项式x+81b4可以分解为(4a2+9b2)(2a+3b)(3b-2a),则x的值是( ) A.16a4 B.-16a4 C.4a2 D.-4a2 4.分解因式2x2-32的结果是( ) A.2(x2-16) B.2(x+8)(x-8) C.2(x+4)(x-4) D.(2x+8(x-8) 二、填空题: 5.已知一个长方形的面积是a2-b2(a>b),其中长边为a+b,则短边长是_______. 6.代数式-9m2+4n2分解因式的结果是_________. 7.25a2-__________=(-5a+3b)(-5a-3b). 8.已知a+b=8,且a2-b2=48,则式子a-3b的值是__________. 三、解答题 9.把下列各式分解因式: ①a2-144b2 ② R2- r2 ③-x4+x2y2 10.把下列各式分解因式: ①3(a+b)2-27c2 ②16(x+y)2-25(x-y)2 ③a2(a-b)+b2(b-a) ④(5m2+3n2)2-(3m2+5n2)2 四、探究题 11.你能想办法把下列式子分解因式吗? ①3a2-13b2 ②(a2-b2)+(3a-3b) 参考答案: 1.D 2.A 3.B 4.C 5.a-b 6.(2n+3m)(2n-3m) 7.9b2 8.4 9.①(a+12b)(a-12b);② (R+r)(R-r);③-x2(x+y)(x-y) 10.①3(a+b+3c)(a+b-3c);②(9x-y)(9y-x); ③(a+b)(a-b)2;④16(m2+n2)(m+n)(m+n) 11.①13(3a+b)·(3a-b);②(a-b)(a+b+3) 因式分解(完全平方公式)同步练习 一、选择题 1.已知y2+my+16是完全平方式,则m的值是( ) A.8 B.4 C.±8 D.±4 2.下列多项式能用完全平方公式分解因式的是( ) A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1 3.下列各式属于正确分解因式的是( ) A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2 C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)2 4.把x4-2x2y2+y4分解因式,结果是( ) A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2 二、填空题 5.已知9x2-6xy+k是完全平方式,则k的值是________. 6.9a2+(________)+25b2=(3a-5b)2 7.-4x2+4xy+(_______)=-(_______). 8.已知a2+14a+49=25,则a的值是_________. 三、解答题 9.把下列各式分解因式: ①a...