抽屉原理练习题 1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。 2.一幅扑克牌有54 张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数? 解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1 张,再取大王、小王各1 张,一共15 张,这15 张牌中,没有两张的点数相同。这样,如果任意再取1 张的话,它的点数必为1~13 中的一个,于是有2 张点数相同。 3.11 名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。试证明:必有两个学生所借的书的类型相同。 证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD 六种。共有10 种类型,把这10 种类型看作10 个“抽屉”,把11 个学生看作11 个“苹果”。如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同。 4.有50 名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同。 证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49 种可能,以这49 种可能得分的情况为49 个抽屉,现有50 名运动员得分,则一定有两名运动员得分相同。 5.体育用品仓库 里有许 多足 球、排 球和 篮 球,某班50 名同学来 仓库拿 球,规 定每个人 至少拿 1 个球,至多拿 2 个球,问 至少有几名同学所拿 的球种类是一致 的? 解题关 键 :利 用抽屉原理2 。 解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜。以这9种配组方式制造9个抽屉,将这50 个同学看作苹果50÷9 =5……5 由抽屉原理2k=[m/n ]+1可得,至少有6人,他们所拿的球类是完全一致的。 6.某校有55 个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2 人,又知参赛者中任何10 人中必有男生,则参赛男生的人生为__________人。 解:因为任意分成四组,必有一组的女生多于2 人,所以女生至少有4×2+1=9(人);因...