时域的函数可以通过线性变换的方法在变换域中表示,变换域的表示有时更为简捷、方便。例如控制理论中常用的拉普拉斯变换,简称拉氏变换,就是其中的一种。 一、拉氏变换的定义 已知时域函数 ,如果满足相应的收敛条件,可以定义其拉氏变换为 (2-45) 式中, 称为原函数, 称为象函数,变量为复变量,表示为 (2-46) 因为 是复自变量的函数,所以 是复变函数。 有时,拉氏变换还经常写为 (2-47) 拉氏变换有其逆运算,称为拉氏反变换,表示为 (2-48) 上式为复变函数积分,积分围线为由到的闭曲线。 二、常用信号的拉氏变换 系统分析中常用的时域信号有脉冲信号、阶跃信号、正弦信号等。现复习一些基本时域信号拉氏变换的求取。 (1)单位脉冲信号 理想单位脉冲信号的数学表达式为 (2-49) 且 (2-50) 所以 (2-51) 说明: 单位脉冲函数可以通过极限方法得到。设单个方波脉冲如图 2-13 所示,脉冲的宽度为,脉冲的高度为,面积为 1。当保持面积不变,方波脉冲的宽度趋于无穷小时,高度趋于无穷大,单个方波脉冲演变成理想的单位脉冲函数。在坐标图上经常将单位脉冲函数 表示成单位高度的带有箭头的线段。 由单位脉冲函数 的定义可知,其面积积分的上下限是从到的。因此在求它的拉氏变换时,拉氏变换的积分下限也必须是。由此,特别指明拉氏变换定义式中的积分下限是,是有实际意义的。所以,关于拉氏变换的积分下限根据应用的实际情况有,,三种情况。为不丢掉信号中位于处可能存在的脉冲函数,积分下限应该为。 (2)单位阶跃信号 单位阶跃信号的数学表示为 (2-52) 又经常写为 (2-53) 由拉氏变换的定义式,求得拉氏变换为 (2-54) 因为 阶跃信号的导数在 处有脉冲函数存在,所以单位阶跃信号的拉氏变换,其积分下限规定为。 (3)单位斜坡信号 单位斜坡信号的数学表示为 (2-55) 图 2-15 单位斜坡信号 另外,为了表示信号的起始时刻,有时也经常写为 (2-56) 为了得到单位斜坡信号的拉氏变换,利用分部积分公式 得 (2-57) (4)指数信号 指数信号的数学表示为 (2-58) 拉氏变换为 (2-59) (5)正弦、余弦信号 正弦、余弦信号的拉氏变换可以利用指数信号的拉氏变换求得。由指数函数的拉氏变换,可以直接写出复指数函数的拉氏变换为 (2-60) 因为 (2-61) 由欧拉公式 (2-62) 有 (2-63) 分别取复指数函数的实部变换与虚部变换,则有:正弦信号的拉氏变换为 (2-64) 同时,余弦信号的拉氏变换为 (2-65)...