电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

求线段最小值

求线段最小值_第1页
1/10
求线段最小值_第2页
2/10
求线段最小值_第3页
3/10
“求两线段长度值和最小”问题全解析 山东沂源县徐家庄中心学校 左进祥 在近几年的中考中,经常遇到求PA+PB最小型问题,为了让同学们对这类问题有一个比较全面的认识和了解,我们特此编写了“求两线段长度值和最小”问题全解析,希望对同学们有所帮助. 一、在三角形背景下探求线段和的最小值 1.1 在锐角三角形中探求线段和的最小值 例1 如图1,在锐角三角形ABC中,AB=4,∠BAC=45°,∠BAC的平分线交 BC于点 D,M,N分别是 AD和AB上的动点,则 BM+MN的最小值为 . 分析:在这里,有两个动点,所以在解答时,就不能用我们常用对称点法.我们要选用三角形两边之和大于第三边的原理加以解决. 解:如图1,在AC上截取 AE=AN,连接 BE.因为∠BAC的平分线交 BC于点 D,所以∠EAM=∠NAM,又因为AM=AM, 所以△AME≌△AMN,所以 ME=MN.所以 BM+MN=BM+ME≥BE.因为BM+MN有最小值.当 BE是点 B到直线AC的距离时,BE取最小值为4,以 BM+MN的最小值是 4.故填 4. 1.2在等边三角形中探求线段和的最小值 例2(2010 山东滨州)如图4所示,等边△ABC的边长为6,AD是 BC边上的中线,M是AD上的动点,E是 AC边上一点.若 AE=2,EM+CM的最小值为 . 分析:要求线段和最小值,关键是利用轴对称思想,找出这条最短的线段,后应用所学的知识求出这条线段的长度即可. 解:因为等边△ABC的边长为6,AD是BC边上的中线,所以点C与点B关于AD对称,连接BE交AD于点M,这就是EM+CM最小时的位置,如图5所示,因为CM=BM,所以EM+CM=BE,过点E作EF⊥BC,垂足为F,因为AE=2,AC=6,所以EC=4,在直角三角形EFC中,因为EC=4, ∠ECF=60°,∠FEC=30°,所以FC=2,EF==2 . 因为BC=6,FC=2,所以BF=4.在直角三角形BEF中,BE= =. 二、在四边形背景下探求线段和的最小值 2.1在直角梯形中探求线段和的最小值 例 3(2010江苏扬州)如图3,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当 PC+PD的和最小时,PB的长为__________. 分析:在这里有一个动点,两个定点符合对称点法求线段和最小的思路,所以解答时可以用对称法. 解:如图3所示,作点D关于直线AB的对称点E,连接CE,交AB于点P,此时PC+PD和最小,为线段CE.因为AD=4,所以AE=4.因为∠ABC=90°,AD∥BC,所以∠EAP=90°. 因为∠APE=∠BPC,所以△APE∽△BPC,所以.因为AE=4,BC=6,所以,所以,所以,因为AB=5,所以PB=3. 2.2在等腰梯形中...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

求线段最小值

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部