空间点线面的位置关系 【考纲要求】 (1)理解空间直线、平面位置关系的定义; (2)了解可以作为推理依据的公理和定理; (3)能运用公理、定理和已经获得的结论证明一些空间图形的位置关系的简单命题。 【知识网络】 【考点梳理】 考点一、平面的基本性质 1、平面的基本性质的应用 (1)公理1:可用来证明点在平面内或直线在平面内; (2)公理2:可用来确定一个平面,为平面化作准备或用来证明点线共面; (3)公理3:可用来确定两个平面的交线,或证明三点共线,三线共点。 2、平行公理主要用来证明空间中线线平行。 3、公理2 的推论: (1)经过一条直线和直线外一点,有且只有一个平面; (2)经过两条相交直线,有且只有一个平面; (3)经过两条平行直线,有且只有一个平面。 4、点共线、线共点、点线共面 空间点线面位置关系 三个公理、三个推论 平面 平行直异面直相交直公理4 及等角定理 异面直线所成的角 异面直线间的距离 直线在平面内 直线与平面平行 直线与平面相交 空间两条直概念 垂斜空间直线 与平面 空间两个平面 两个平面平行 两个平面相交 三垂线定理 直线与平面所成的角 (1)点共线问题 证明空间点共线问题,一般转化为证明这些点是某两个平面的公共点,再根据公理3证明这些点都在这两个平面的交线上。 (2)线共点问题 证明空间三线共点问题,先证两条直线交于一点,再证明第三条直线经过这点,把问题转化为证明点在直线上。 要点诠释:证明点线共面的常用方法 ①纳入平面法:先确定一个平面,再证明有关点、线在此平面内; ②辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α、β重合。 考点二、直线与直线的位置关系 (1)位置关系的分类 相交直线共面直线平行直线异面直线:不同在任何一个平面内,没有公共点 (2)异面直线所成的角 ①定义:设 a,b 是两条异面直线,经过空间中任一点O 作直线a’∥a,b’∥b,把a’与 b’所成的锐角(或直角)叫做异面直线a 与 b 所成的角(或夹角). ②范围:0 2, 要点诠释:证明两直线为异面直线的方法: 1、定义法(不易操作) 2、反证法:先假设两条直线不是异面直线,即两直线平行或相交,由假设的条件出发,经过严密的推理,导出矛盾,从而否定假设肯定两条直线异面。此法在异面直线的判定中经常用到。 3、客观题中,也可用下述结论: 过平面外...