输出SK=K+1a= aS=S+a∙K是否输入aS=0,K=1结束K≤6开始一般高等学校招生全国统一考试理科数学(全国 2 卷)一、选择题:本题共 12 小题,每题 5 分,共 60 分。在每题给出的四个选项中,只有一项是符合题目规定的。1。()A. B. C. D.2。设集合,.若,则()A. B. C. D.3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?"意思是:一座 7 层塔共挂了 381 盏灯,且相邻两层中的下一层灯数是上一层灯数的 2 倍,则塔的顶层共有灯()A . 1 盏 B . 3 盏 C . 5 盏 D . 9盏4。如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三 视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A. B. C. D.5.设,满足约束条件,则的最小值是()A. B. C. D.6.安排 3 名志愿者完毕 4 项工作,每人至少完毕 1 项,每项工作由 1 人完毕,则不一样的安排方式共有()A.12 种 B.18 种 C.24 种 D.36 种7。甲、乙、丙、丁四位同学一起去向老师问询成语竞赛的成绩.老师说:你们四人中有 2 位优秀,2 位良好,我目前给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不懂得我的成绩.根据以上信息,则()A.乙可以懂得四人的成绩 B.丁可以懂得四人的成绩C.乙、丁可以懂得对方的成绩 D.乙、丁可以懂得自己的成绩8.执行右面的程序框图,假如输入的,则输出的()A.2 B.3 C.4 D.59.若双曲线(,)的一条渐近线被圆所截得的弦长为 2,则的离心率为()A.2 B. C. D.10。已知直三棱柱中,,,,则异面直线与所成角的余弦值为()A. B. C. D.11.若是函数的极值点,则的极小值为()A. B。 C。 D。112.已知是边长为 2 的等边三角形,P 为平面 ABC 内一点,则的最小值是()A。 B。 C。 D.二、填空题:本题共 4 小题,每题 5 分,共 20 分。13.一批产品的二等品率为,从这批产品中每次随机取一件,有放回地抽取次,表达抽到的二等品件数,则.14。函数()的最大值是.15.等差数列的前项和为,,,则.16.已知是抛物线的焦点,是上一点,的延长线交轴于点.若为的中点,则.三、解答题:共 70 分。解答应写出文字阐明、解答过程或演算环节。第 17~21 题为必做题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据规定作...