线性代数知识点总结第一章 行列式(一)要点1、二阶、三阶行列式2、全排列和逆序数,奇偶排列(可以不介绍对换及有关定理),n 阶行列式的定义3、行列式的性质4、n 阶行列式,元素的余子式和代数余子式,行列式按行(列)展开定理5、克莱姆法则(二)基本要求 1、理解 n 阶行列式的定义2、掌握 n 阶行列式的性质 3、会用定义判定行列式中项的符号4、理解和掌握行列式按行(列)展开的计算方法,即5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组7、了解个方程个未知量的齐次线性方程组有非零解的充要条件第二章 矩阵(一)要点1、矩阵的概念 矩阵是一个矩阵表。当时,称为阶矩阵,此时由的元素按原来排列的形式构成的阶行列式,称为矩阵的行列式,记为.注:矩阵和行列式是两个完全不同的两个概念。2、几种特别的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1)矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵. 假如两矩阵与相乘,有,则称矩阵与可换。注:矩阵乘积不一定符合交换 (2)方阵的幂:对于阶矩阵及自然数, 规定,其中为单位阵 . (3) 设多项式函数,为方阵,矩阵的多项式,其中为单位阵。 (4)阶矩阵和,则。 (5)阶矩阵,则4、分块矩阵及其运算5、逆矩阵:可逆矩阵(若矩阵可逆,则其逆矩阵是唯一的);矩阵的伴随矩阵记为,矩阵可逆的充要条件;逆矩阵的性质。6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价意义下的标准形;矩阵可逆的又一充分必要条件:可以表示成一些初等矩阵的乘积;用初等变换求逆矩阵。7、矩阵的秩:矩阵的阶子式;矩阵秩的概念;用初等变换求矩阵的秩8、矩阵的等价(二)要求1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特别的矩阵及其性质3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当可逆时,会用伴随矩阵求逆矩阵5、了解分块矩阵及其运算的方法(1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。(...