2024 高教社杯全国大学生数学建模竞赛承 诺 书我们认真阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等)与队外的任何人(包括指导老师)讨论、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的, 假如引用别人的成果或其他公开的资料(包括网上查到的资料),必须根据规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。我们参赛选择的题号是(从 A/B/C/D 中选择一项填写): B 我们的参赛报名号为(假如赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员 (打印并签名) :1. 2. 3.指导老师或指导老师组负责人 (打印并签名): 教练组 日期: 2024 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):2024 高教社杯全国大学生数学建模竞赛编 号 专 用 页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):太阳能小屋的优化设计摘要本文通过对题中所给数据和相关资料的分析,给出了光伏电池在小屋外表面的优化铺设方案。问题一:根据省市的气象数据,在仅考虑贴附安装方式的情况下,建立了多目标非线性规划模型。根据该模型的结果,得出 35 年总发电量为:1065202.28 度 , 单 位 发 电 量 的 花 费 为 : 0.1566 元 , 总 经 济 效 益 为 :365751.12 元,成本回收年限为:19 年。问题二:在问题一的基础上,考虑了电池板的朝向与倾角对光伏电池的工作效率的影响,采纳架空方式安装光伏电池,使之随着太阳位置的改变而均匀的、稳定的、连续的改变,建立了太阳辐射总强度的连续模型,并求其定积分,仍然是多目标非线性规划模型。最终得出 35 年总发电量为:1316013.03 度单位发电量的花费为:0.11 元,总经济效益为:578835.8 元,比模型一多了213084.7 元,成本回收年限为:14 年。 问题三:根据的位置的坐标,以与太阳方位角和高度角的变化情况,小屋被设计为...