第1章行列式(作业1)一、填空题1.设自然数从小到大为标准次序,则排列13…(2n−1)24…(2n)的逆序数为,排列13…(2n−1)(2n)(2n−2)…2的逆序数为.2.在6阶行列式中,a23a42a31a56a14a65这项的符号为.3.所有n元排列中,奇排列的个数共个.二、选择题1.由定义计算行列式|00⋯01000⋯200⋯⋯⋯⋯⋯⋯n−10⋯00000⋯00n|=().(A)n!(B)(−1)n(n−1)2n!(C)(−1)(n−1)(n−2)2n!(D)(−1)n(n−1)n!2.在函数f(x)=|xx101x2323x2112x|中,x3的系数是().(A)1(B)-1(C)2(D)33.四阶行列式的展开式中含有因子a32的项,共有()个.(A)4;(B)2;(C)6;(D)8.三、请按下列不同要求准确写出n阶行列式D=det(aij)定义式:1.各项以行标为标准顺序排列;2.各项以列标为标准顺序排列;3.各项行列标均以任意顺序排列.四、若n阶行列式中,等于零的元素个数大于n2−n,则此行列式的值等于多少?说明理由.第1章行列式(作业2)一、填空题1.若D=|a11a12a13a21a22a23a31a32a33|=1,D则1=|4a112a11−3a12a134a212a21−3a22a234a312a31−3a32a33|=_____.2.方程|112312−x22323152319−x2|=0的根为___________.二、计算题1.|213−441916−30−15−4560117−18|2.|a100−1b100−1c100−1d|3.Dn=|ab⋯bba⋯b⋯⋯⋯⋯bb⋯a|4.Dn+1=|xa1a2⋯an−11a1xa2⋯an−11a1a2x⋯an−11⋯⋯⋯⋯⋯⋯a1a2a3⋯x1a1a2a3⋯an1|5.计算n阶行列式Dn=|x1+1x1+2⋯x1+nx2+1x2+2⋯x2+n⋯⋯⋯⋯xn+1xn+2⋯xn+n|(n≥2)。第1章行列式(作业3)一、填空题1.当n为奇数时,行列式|0a12a13⋯a1n−a120a23⋯a2n−a13−a230⋯a3n⋯⋯⋯⋯⋯−a1n−a2n−a3n⋯0|=_________.2.行列式|xy0⋯000xy⋯00⋯⋯⋯⋯⋯⋯000⋯xyy00⋯0x|=.二、选择题1.设D是n阶行列式,则下列各式中正确的是().[Aij是D中aij的代数余子式].(A)∑i=1naijAij=0,j=1,2,⋯,n;(B)∑i=1naijAij=D,j=1,2,⋯,n;(C)∑j=1na1jA2j=D;(D)∑j=1naijAij=0,i=1,2,⋯,n.2.行列式结果等于(b−a)(c−a)(d−a)(c−b)(d−b)(d−c)的行列式是().(A)|1111abcda2b2c2d2a4b4c4d4|;(B)|11110b−ac−ad−a0bcd0b3c3d3|;(C)|1aa2a31bb2b31cc2c31dd2d3|;(D)|10001b−abb21c−acc21d−add2|三、计算题1.设|A|=|1−513113411232234|,计算A41+A42+A43+A44,其中A4j(j=1,2,3,4)是|A|中元素a4j的代数余子式.2.|x−10⋯000x−1⋯00⋯⋯⋯⋯⋯⋯000⋯x−1anan−1an−2⋯a2x+a1|3.Dn+1=|an(a−1)n⋯(a−n)nan−1(a−1)n−1⋯(a−n)n−1⋯a⋯a−1⋯⋯⋯a−n11⋯1|4.D2n=|anbn⋱0⋰0a1b1c1d10⋰0⋱cndn|第1章行列式(作业4)一、填空题1.已知关于变量xi(i=1,3)的线性方程组{a1x1+a2x2+a3x3=d1b1x1+b2x2+b3x3=d2c1x1+c2x2+c3x3=d3,由克莱姆法则,当满足条件时,方程组有唯一解,且x3=.2.齐次线性方程组{a11x1+a12x2+⋯a1nxn=0a21x1+a22x2+⋯a2nxn=0⋯⋯⋯⋯⋯⋯an1x1+an2x2+⋯annxn=0的系数行列式为D,那么D=0是该行列式有非零解的条件.二、求解下列行列式1.Dn=|0123⋯n−11012⋯n−22101⋯n−33210⋯n−4⋯⋯⋯⋯⋯⋯n−1n−2n−3n−4⋯0|2.Dn=|1+a11⋯111+a2⋯1⋯⋯⋯⋯11⋯1+an|,其中a1a2⋯an≠0.三、问λ取何值时,齐次线性方程组{(1−λ)x1−2x2+4x3=0¿{2x1+(3−λ)x2+x3=0¿¿¿¿有非零解?第1章行列式(检测题)一、填空题1.若排列i1i2⋯in的逆序数为k,则排列inin−1⋯i1的逆序数为.2.D=|a1a2000a3a4000c1c223−1c3c4014c5c6450|=.3.n阶行列式|a1na2n⋯an−1nanna1n−1a2n−2⋯an−1n−10⋯⋯⋯⋯⋯a12a22⋯00a110⋯00|=.4.|1222231111144243155253|=.二、选择题1.设P(x)=|1a1a2⋯an−11a1+x+1a2⋯an−11a1a2+x+2⋯an−1⋯⋯⋯⋯⋯1a1a2⋯an−1+x+n−1|,其中a1,a2,⋯,an−1是互不相同得实数,则方程P(x)=0()。(A)无实根;(B)根为1,2,。。。,n-1;(C)根为-1,-2,。。。,-(n-1);(D)根为0。2.设n阶行列式D=det(aij),把D上下翻转、或逆时针旋转90∘、或依副对角线翻转,依次得D1=|an1⋯ann⋮⋮a11⋯a1n|,D2=|a1n⋯ann⋮⋮a11⋯an1|,D3=|ann⋯a1n⋮⋮an1⋯a11|,则()(A)D1=D2=D3=D;(B);D1=(−1)n2D,D2=(−)n(n−1)2D,D3...