3.2 一元二次不等式的应用一、教学目标1.知识与技能:巩固一元二次方程、一元二次不等式与二次函数的关系;进一步熟练解一元二次不等式的解法;2.过程与方法:培养数形结合的能力,一题多解的能力,培养抽象概括能力和逻辑思维能力;3.情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会从不同侧面观察同一事物思想二、教学重点:熟练掌握一元二次不等式的解法教学难点:理解一元二次不等式与一元二次方程、二次函数的关系三、教学方法:探析归纳,讲练结合四、教学过程(一).课题导入:1.一元二次方程、一元二次不等式与二次函数的关系;2.一元二次不等式的解法步骤——课本第 86 页的表格(二).探析新课[范例讲解]例 1 某种牌号的汽车在水泥路面上的刹车距离 s m 和汽车的速度 x km/h 有如下的关系:在一次交通事故中,测得这种车的刹车距离大于 39.5m,那么这辆汽车刹车前的速度是多少?(精确到 0.01km/h)解:设这辆汽车刹车前的速度至少为 x km/h,根据题意,我们得到移项整理得:显然 ,方程有两个实数根,即。所以不等式的解集为在这个实际问题中,x>0,所以这辆汽车刹车前的车速至少为 79.94km/h.例 4、一个汽车制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量 x1(辆)与创造的价值 y(元)之间有如下的关系:若这家工厂希望在一个星期内利用这条流水线创收 6000 元以上,那么它在一个星期内大约应该生产多少辆摩托车?解:设在一个星期内大约应该生产 x 辆摩托车,根据题意,我们得到移项整理,得因为,所以方程有两个实数根由二次函数的图象,得不等式的解为:50