电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

【精品】高中数学 9.10《球·第三课时》教案 旧人教版必修

【精品】高中数学 9.10《球·第三课时》教案 旧人教版必修_第1页
1/4
【精品】高中数学 9.10《球·第三课时》教案 旧人教版必修_第2页
2/4
【精品】高中数学 9.10《球·第三课时》教案 旧人教版必修_第3页
3/4
球(三)●教学目标(一)教学知识点1.推导球表面积公式 S=4πR2的方法:“分割——求近似和——化为准确和.”2.球的表面积公式 S=4πR2的应用.3.几何体的接切问题.(二)能力训练要求1.使学生再一次了解“分割——求近似和——化为准确和”的思想方法.2.使学生熟练掌握球的表面积公式 S=4πR2.3.使学生进一步熟练解决几何体的相接切问题.(三)德育渗透目标培养学生用普遍联系的观点看问题.●教学重点球表面积公式 S=4πR2的应用.●教学难点了解“分割——求近似和——化为准确和”的思想方法.●教学方法启发式推导球的表面积公式 S=4πR2的过程同前面推导球体积公式的过程一样,并不要求学生熟练掌握,但必须让学生了解推导过程中所用“分割——求近似和——化为准确和”的方法,它与推导球体积公式时所用的方法在思想上是一脉相承的,只是在具体分割的做法上有所不同.教学中,教师应指导学生再一次体会“分割——求近似和——化为准确和”这一重要的数学思想在研究数学问题中的应用.在上节讨论与球有关的相接切问题的基础上,通过例题的分析启发学生进一步归纳总结处理这类问题的方法与技巧.●教具准备多媒体课件一个.作球 O,将球 O 的表面分成 n 个小网格,把球心与每一个小网格的顶点连接起来,让学生观察,整个球体被分割成 n 个“小锥体”,当 n 无限增大时,每一个小锥体“曲”的底面几乎变成“平”的,这时,每个“小锥体”就近似于棱锥.投影片四张.第一张:本课时教案练习(记作 9.9.3 A)第二张:课本 P70例 3(记作 9.9.3 B)第三张:本课时教案例 1(记作 9.9.3 C)第四张:本课时教案例 2(记作 9.9.3 D)●教学过程Ⅰ.复习回顾[师]上节课,我们讨论了球的体积公式及与球有关的相接切问题,现在,请大家练习以下题目:(打出投影片 9.9.3 A,读题)练习:1.已知球面上 A、B、C 三点的截面和球心的距离等于球的半径的一半,且AB=BC=CA=2,求球的体积.2.一个体积为 8 的正方体的各个顶点都在球面上,求此球的体积.用心 爱心 专心[师]对于第 1 题,欲求球的体积,只需求出球的半径 R 即可,那么,如何去求 R 呢?[生]由于已知条件过球面上 A、B、C 三点的截面和球心距离等于球半径的一半,所以应作出过 A、B、C 三点的截面圆 O1,在三棱锥 O—ABC 中进行分析解决.[师]思路清晰,请同学将过程写在本上.(学生练习,教师巡视,请一位同学板演,教师评讲)[师]对于第 2 题,由正方...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

【精品】高中数学 9.10《球·第三课时》教案 旧人教版必修

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部