3.1.1 倾斜角与斜率(教学设计)一、内容及其解析1、内容:直线的倾斜角与斜率的概念及斜率公式。2、解析:本课是高中解析几何内容的开始。解析几何是以平面直角坐标系为桥梁,将几何问题代数化,通过代数运算来研究几何图形性质的方法。因为直线是最基本的几何图形,所以要实现几何问题代数化应先从直线入手,而直线的倾斜角和斜率是刻画直线倾斜程度的几何要素与代数表示,是将直线用代数形式表示的基础。通过该内容的学习,帮助学生初步了解平面直角坐标系内几何要素代数化的过程,初步渗透解析几何的基本思想和基本研究方法。本课有着开启全章,奠定基础,渗透方法的作用。直线的斜率是后续内容展开的主线,无论是建立直线的方程,还是研究两条直线的位置关系,以及讨论直线与圆锥曲线的位置关系,直线的斜率都有重要作用。因此,正确理解斜率概念,熟练掌握斜率公式是学好本章的关键。二、目标及其解析1、目标:理解直线的倾斜角和斜率概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。2、解析: ①在平面直角坐标系中观察具体图形,在探索描述直线的倾斜程度的几何要素的过程中,抽象出直线倾斜角的概念,明确倾斜角的取值范围;② 以日常生活中表示倾斜面的“坡度”问题,引出直线斜率的概念,经历用代数方法刻画直线斜率的过程,明确倾斜角和斜率之间的关系。③ 在探究直线的斜率与直线上两点坐标关系的过程中,掌握已知直线上两点计算直线斜率的公式,能根据斜率的计算公式,求直线的斜率。④ 通过经历用代数方法刻画直线斜率的过程,帮助学生了解解析几何的“坐标法”思想和基本研究方法,进一步体会“数形结合”的思想方法。三、教学问题诊断在欧氏几何的学习中,学生已经知道两点可以确定一条直线,而已知一点和什么条件能确定直线,以及如何来刻画这个条件,对学生来说有点困难,所以在教学过程中可以引导学生先观察经过同一点的不同直线的区别,从中形成倾斜角的概念;本课的教学难点是:直线的斜率与它的倾斜角间的关系。应让学生明白直线的倾斜角、斜率都是用来刻画直线倾斜程度的,它们在本质上是一致的。在引入倾斜角概念后还要引入斜率的概念的目的是将直线的倾斜程度代数化,为以后通过点的坐标来计算、刻画直线的倾斜程度服务。同时还应通过信息技术使学生认清斜率的正负与倾斜角大小的关系;本课教学重点是:斜率的概念及用代数方法刻画斜率的过程,过两点的直线斜率的计算公式。四、教学支持...