四川省岳池县第一中学高中数学必修三学案:1.3 算法案例(1) 学习目标 1.理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析。2.基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序。 学习过程 一、课前准备(预习教材 P34~ P36,找出疑惑之处)问题 1:在初中,我们已经学过求最大公约数的知识,你能求出 18 与 30 的公约数吗?问题 2:如果公约数比较大而且根据我们的观察又不能得到一些公约数,我们又应该怎样求它们的最大公约数?比如求 8251 与 6105 的最大公约数?二、新课导学※ 探索新知探究:辗转相除法问题: 求两个正数 8251 和 6105 的最大公约数。(分析:8251 与 6105 两数都比较大,而且没有明显的公约数,如 能把它们都变小一点,根据已有的知识即可求出最大公约数)解:8251=6105×1+2146显然 8251 的最大公约数也必是 2146 的约数,同样 6105 与 2146 的公约数也必是 8251 的约数,所以 8251 与 6105 的最大公约数也是 6105 与 2146 的最大公约数。6105=2146×2+18132146=1813×1+3331813=333×5+148333=148×2+37148=37×4+0则 37 为 8251 与 6105 的最大公约数。新知 1:以上我们求最大公约数的方法就是辗转相除法。也叫欧几里德算法,它是由欧几里德在公元前 300 年左右首先提出的。利用辗转相除法求最大公约数的步骤如下:第一步:用较大的数 m 除以较小的数 n 得到一个商 q0和一个余数 r0;第二步:若 r0=0,则 n 为 m,n 的最大公约数;若 r0≠0,则用除数 n 除以余数 r0得到一个商 q1和一个余数 r1;第三步:若 r1=0,则 r1为 m,n 的最大公约数;若 r1≠0,则用除数 r0除以余数 r1得到一个商 q2和一个余数 r2;……依次计算直至 rn=0,此时所得到的 rn-1即为所求的最大公约数。探究:更相减损术问题:用更相减损术求 98 与 63 的最大公约数.解:由于 63 不是偶数,把 98 和 63 以大数减小数,并辗转相减,即:98-63=3563-35=2835-28=728-7=2121-7=1414-7=7所以,98 与 63 的最大公约数是 7。新知 2:我国早期也有解决求最大公约数问题的算法,就是更相减损术。更相减损术求最大公约数的步骤如下:可半者半之,不可半者,副置分母·子之数,以少减多,更相减损求其等也,以等数约之。翻译出来为:第一步:任意给出两个正数;判断它们是否都是偶...