1.6.4 平面与平面垂直的性质一、学习目标:知识与技能:使学生掌握直线与平面垂直,平面与平面垂直的性质定理;能运用性质定理解决一些简单问题;了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系。过程与方法:让学生在观察物体模型的基础上,进行操作确认,获得对性质定理正确性的认识;性质定理的推理论证。情感态度与价值观:通过“直观感知、操作确认,推理证明”,培养学生空间概念、空间想象能力以及逻辑推理能力。二、学习重、难点重点:平面与平面垂直的性质及其应用。难点:掌握两个平面垂直的性质及应用.三、学法指导及要求:1、限定 45 分钟完成,注意逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆。3、A:自主学习;B:合作探究;C:能力提升 4、小班、重点班完成全部,平行班完成 A.B 类题。平行班的 A 级学生完成 80%以上 B 完成 70%~80%C 完成 60%以上。四、知识链接:直线和平面垂直的性质定理:两个平面垂直的判定定理:二面角的定义:五、学习过程:问题 1:黑板所在平面与地面所在平面垂直,你能否在黑板上画一条直线与地面垂直?问题 2:如图,长方体 ABCD-A'B'C'D'中,平面 A'ADD'与平 面 ABCD 垂直,直线 A'A 垂直于其交线 AD,平面 A'ADD’内的直线 A'A与平面 ABCD 垂直吗?探究 1:如图,设 α⊥β,α∩β=CD,ABα,AB⊥CD,且 AB∩CD=B,我们看直 线 AB 与平面 β 的位置关系。归纳得到平面与平面垂直的性质定理:定理 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。想一想:用符号语言如何表述这个定理?可以通过直线与平面垂直判定平面与平面垂直,平面与平面垂直性质定理说明,由平面与平面垂直可以得到直线与平面垂直,这种直线与平面的的位置关系同平面与平面的位置关系的相互转化,是解决空间图形的重要思想方法。探究 2:1.若两个平面垂直,过其中一个平面内一点能否作另一个平面的垂线?这条直线与这个平面有何关系?可作多少条这样的垂线?2.练习:两个平面互相垂直,下列命题正确的是( )A、一个平面内的已知直线必垂直于另一个平面内的任意一条直线B、一个平面内的已知直线必垂直于另一个平面内的无数条直线C、一个平面内的任意一条直线必垂直于另一个平面D、过一个平面内任意点作交线的垂线,则此垂线必垂直...