集合及集合的表示 【学习目标】1.了解集合的含义,会使用符号“”“”表示元素与集合之间的关系.2.能选择自然语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3.理解集合的特征性质,会用集合的特征性质描述一些集合,如常用数集、解集和一些基本图形的集合等.【要点梳理】集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上.另一方面,集合论及其所反映的数学思想,在越来越广泛的领域中得到应用.要点一、集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体.2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集.3.关于集合的元素的特征(1)确定性:设 A 是一个给定的集合,x 是某一个具体对象,则 x 或者是 A 的元素,或者不是 A 的元素两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:集合中的元素的次序无先后之分.如:由 1,2,3 组成的集合,也可以写成由 1,3,2 组成一个集合,它们都表示同一个集合.4.元素与集合的关系:(1)如果 a 是集合 A 的元素,就说 a 属于(belong to)A,记作 aA(2)如果 a 不是集合 A 的元素,就说 a 不属于(not belong to)A,记作5.集合的分类(1)空集:不含有任何元素的集合称为空集(empty set),记作:.(2)有限集:含有有限个元素的集合叫做有限集.(3)无限集:含有无限个元素的集合叫做无限集.6.常用数集及其表示非负整数集(或自然数集),记作 N正整数集,记作 N*或 N+整数集,记作 Z有理数集,记作 Q实数集,记作 R要点二、集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合.1. 自然语言法:用文字叙述的形式描述集合的方法.如:大于等于 2 且小于等于 8 的偶数构成的集合.2. 列举法:把集合中的元素一一列举出来,写在大括号内.如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;3.描述法:把集合中的元素的公共属性描述出来,写在大括号{ }内.具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在...