小学数学公式:鸡兔同笼问题公式鸡兔同笼问题公式 (1)已知总头数和总脚数,求鸡、兔各多少: (总脚数-每只鸡的脚数总头数)(每只兔的脚数-每只鸡的脚数)=兔数; 总头数-兔数=鸡数。 或者是(每只兔脚数总头数-总脚数)(每只兔脚数-每只鸡脚数)=鸡数; 总头数-鸡数=兔数。 例如,"有鸡、兔共 36 只,它们共有脚 100 只,鸡、兔各是多少只?' 解一(100-236)(4-2)=14(只)兔; 6-14=22(只)鸡。 解二(436-100)(4-2)=22(只)鸡; 36-22=14(只)兔。 (答略) (2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式 (每只鸡脚数总头数-脚数之差)(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数 或(每只兔脚数总头数+鸡兔脚数之差)(每只鸡的脚数+每只免的脚数)=鸡数; 总头数-鸡数=兔数。(例略) (3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。 (每只鸡的脚数总头数+鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数。 或(每只兔的脚数总头数-鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=鸡数; 总头数-鸡数=兔数。(例略) (4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式: (1 只合格品得分数产品总数-实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数总产品数+实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。 例如,"灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记 4 分,每生产一个不合格品不仅不记分,还要扣除 15 分。某工人生产了 1000只灯泡,共得 3525 分,问其中有多少个灯泡不合格?' 解一(41000-3525)(4+15) =47519=25(个) 解二 1000-(151000+3525)(4+15) =1000-1852519 =1000-975=25(个)(答略) ("得失问题'也称"运玻璃器皿问题',运到完好无损者每只给运费元,破损者不仅不给运费,还需要赔本钱元。它的解法明显可套用上述公式。) (5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式: 〔(两次总脚数之和)(每只鸡兔脚数和)+(两次总脚数之差)(每只鸡兔脚数之差)〕2=鸡数; 〔(两次总脚数之和)(每只鸡兔脚数之和)-(两次总脚数之差)(每只鸡兔脚数之差)〕2=兔数。 例如,"有一些鸡和兔,共有脚 44 只,若将鸡数与兔数互换,则共有脚 52只。鸡兔各是多少只?' 解〔(52+44)(4+2)+(52-44)(4-2)〕2 =202=10(只)鸡 〔(52+44)(4+2)-(52-44)(4-2)〕2 =122=6(只)兔(答略)