电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

自动控制系统的数学模型

自动控制系统的数学模型_第1页
1/29
自动控制系统的数学模型_第2页
2/29
自动控制系统的数学模型_第3页
3/29
第二章自动控制系统的数学模型教学目的:(1) 建立动态模拟的概念,能编写系统的微分方程。(2) 掌握传递函数的概念及求法。(3) 通过本课学习掌握电路或系统动态结构图的求法,并能应用各环节的传递函数,求系统的动态结构图。(4) 通过本课学习掌握电路或自动控制系统动态结构图的求法,并对系统结构图进行变换。(5) 掌握信号流图的概念,会用梅逊公式求系统闭环传递函数。(6) 通过本次课学习,使学生加深对以前所学的知识的理解,培育学生分析问题的能力教学要求:(1) 正确理解数学模型的特点;(2) 了解动态微分方程建立的一般步骤和方法;(3) 牢固掌握传递函数的定义和性质,掌握典型环节及传递函数;(4) 掌握系统结构图的建立、等效变换及其系统开环、闭环传递函数的求取,并对重要的传递函数如:控制输入下的闭环传递函数、扰动输入下的闭环传递函数、误差传递函数,能够熟练的掌握;(5) 掌握运用梅逊公式求闭环传递函数的方法;(6) 掌握结构图和信号流图的定义和组成方法,熟练掌握等效变换代数法则,简化图形结构,掌握从其它不同形式的数学模型求取系统传递函数的方法。教学重点:有源网络和无源网络微分方程的编写;有源网络和无源网络求传递函数;传递函数的概念及求法;由各环节的传递函数,求系统的动态结构图;由各环节的传递函数对系统的动态结构图进行变换;梅逊增益公式的应用。教学难点:举典型例题说明微分方程建立的方法;求高阶系统响应;求复杂系统的动态结构图;对复杂系统的动态结构图进行变换; 求第 K 条前向通道特记式的余子式。教学方法:讲授本章学时:10 学时主要内容: 引言 动态微分方程的建立 线性系统的传递函数 典型环节及其传递函数系统的结构图 信号流图及梅逊公式引言:什么是数学模型为什么要建立系统的数学模型1. 系统的数学模型:描述系统输入输出变量以及各变量之间关系的数学表达式。1)动态模型:描述系统处于暂态过程中个变量之间关系的表达式,他一般是时间函数。如:微分方程,传递函数,状态方程等。2)静态模型:描述过程处于稳态时各变量之间的关系。一般不是时间函数2. 建立动态模型的方法1)机理分析法:用定律定理建立动态模型。2)实验法: 运用实验数据提供的信息,采纳辨识方法建模。3. 建立动态模型的意义:找出系统输入输出变量之间的相互关系,以便分析设计系统,使系统控制效果最优。动态微分方程的建立无论什么系统,输入输出量在...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

自动控制系统的数学模型

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部