§7.3 二元一次不等式(组)与简单的线性规划问题最新考纲考情考向分析1.会从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.会从实际情境中抽象出一些简单的二元一次线性规划问题,并能加以解决.以画二元一次不等式(组)表示的平面区域、目标函数最值的求法为主,兼顾由最优解(可行域)情况确定参数的范围,以及简单线性规划问题的实际应用,加强转化与化归和数形结合思想的应用意识.本节内容在高考中以选择、填空题的形式进行考查,难度中低档.1.二元一次不等式表示的平面区域一般地,直线 l:ax+by+c=0 把直角坐标平面分成了三个部分:(1)直线 l 上的点(x,y)的坐标满足 ax + by + c = 0 ;(2)直线 l 一侧的平面区域内的点(x,y)的坐标满足 ax+by+c>0;(3)直线 l 另一侧的平面区域内的点(x,y)的坐标满足 ax+by+c<0.所以,只需在直线 l 的某一侧的平面区域内,任取一特殊点(x0,y0),从 ax0+by0+c 值的正负,即可判断不等式表示的平面区域.2.线性规划相关概念名称意义约束条件由变量 x,y 组成的一次不等式线性约束条件由 x,y 的一次不等式(或方程)组成的不等式组目标函数欲求最大值或最小值的函数线性目标函数关于 x,y 的一次解析式可行解满足线性约束条件的解可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题3.重要结论画二元一次不等式表示的平面区域的直线定界,特殊点定域:(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线.(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.知识拓展1.利用“同号上,异号下”判断二元一次不等式表示的平面区域对于 Ax+By+C>0 或 Ax+By+C<0,则有(1)当 B(Ax+By+C)>0 时,区域为直线 Ax+By+C=0 的上方;(2)当 B(Ax+By+C)<0 时,区域为直线 Ax+By+C=0 的下方.2.最优解和可行解的关系最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)二元一次不等式组所表示的平面区域是各个不等式所表示的平面区域的交集.( √ )(2)不等式 Ax+By+C>0 表示的平面区域一定在直线 Ax+By+C=0 的上方.(...