电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

矩阵函数以及应用本科学位论文

矩阵函数以及应用本科学位论文_第1页
1/35
矩阵函数以及应用本科学位论文_第2页
2/35
矩阵函数以及应用本科学位论文_第3页
3/35
矩阵函数以及应用毕业设计1 绪论1.1 矩阵(Matrix)的进展与历史人们对矩阵(Matrix)的讨论历史非常悠久,在很久以前就已经有人讨论过了幻方和拉丁方阵。在过去的很长时间内,矩阵都是人们解决线性问题的最主要方法。成书于汉朝前期的《九章算术》,在表示线性方程组的过程中使用了将方程中不同系数分开的方法,这种方法在后来的不断演化下最终得到方程的增广矩阵。在计算的过程中常常使用矩阵的初等变换进行消元,具体说就是通过一些计算技巧将前面给出的增广矩阵化为行最简型。但是当时我们能知道的矩阵知识非常的少,虽然过去的标准和现在的矩阵在表示上已经非常的类似了,但这两者都是以线性方程为基本标准。事实上子宫基质的控制中心和开始生活意义的地方是矩阵最开始的意义,所以说矩阵有生命的意义。在数学中,开始出现的是对现在数学都有决定性的行列式,但需要行列式的行和列相等,最终的排成的表都是方的,随着讨论的深化人们发现行数等于列数的行列式已经无法满足现实生活中的实际需要了。在这种情况下,矩阵应运而生。现在对于我们来说非常熟悉的矩阵和行列式,它们的概念是非常的不一样的。行列式能根据我们的规则计算出它的结果,而矩阵是将数字按一定顺序排列得到的。在学术讨论中恰当地使用矩阵,能用向量空间中的向量表示线性方程组中系数矩阵;因此,一个多元线性方程组的解的情况,以及一系列问题的理论解之间的不同关系,都可以得到彻底解决。矩阵都有自身的行和列,水平的称之为行,竖直的称之为列。这些我们现在能看到的关于矩阵的一切都是由无数数学家的摸索得来的。矩阵(Matrix)在数学进展历史上有着非常重要的位置,它一直是数学讨论的一个主要方面,是数学在讨论和应用过程中常常用到的知识。“矩阵”由英国数学家叶(Sylvester)第一次使用,他使用的这个数学术语最后将矩阵的列数和早期的行列式分离开来。在数学进展的历史长河中矩阵理论的创立者被一致认为是英国数学家凯莱(Cayley),是他最先将矩阵作为一个单独的数学上的概念提出来,并且关于矩阵的很多学术论文和著作都是他最早发表的。事实上最早的矩阵是从对大量行列式的讨论中分离出来的,因为和行列式对应的方阵本身就可以做许多的讨论和运用,随着对行列式讨论的深化,矩阵的许多知识点也日渐完善。从逻辑上讲,概念应先于行列式的矩阵的概念和历史上真正的顺序是恰恰相反的。在 19 世纪 50 年代,英国数学家凯莱(Cayley)公开展示了自己关于矩阵...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

矩阵函数以及应用本科学位论文

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部