圆锥曲线中的定值定点问题(7 页)Good is good, but better carries it.精益求精,善益求善。2025 届高二文科数学新课改试验学案(10)---圆锥曲线中的定值定点问题1.已知椭圆 的离心率为,点在 C 上.(I)求 C 的方程;(II)直线 l 不经过原点 O,且不平行于坐标轴,l 与 C 有两个交点 A,B,线段 AB 中点为 M, 证明:直线 OM 的斜率与直线 l 的斜率乘积为定值.2.已知椭圆 C:过点 A(2,0),B(0,1)两点.(I)求椭圆 C 的方程及离心率;(Ⅱ)设 P 为第三象限内一点且在椭圆 C 上,直线 PA 与 y 轴交于点 M,直线 PB 与 x轴交于点 N, 求证:四边形 ABNM 的面积为定值.3.椭圆的离心率为,其左焦点到点的距离为(I)求椭圆的标准方程(Ⅱ)若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆 过椭圆的右顶点。求证:直线 过定点,并求出该定点的坐标.<圆锥曲线中的定值定点问题>答案1.【答案】(I)(II)见试题解析试题解析:【名师点睛】本题第一问求椭圆方程的关键是列出关于的两个方程,通过解方程组求出,解决此类问题要重视方程思想的应用;第二问是证明问题,解析几何中的证明问题通常有以下几类:证明点共线或直线过定点;证明垂直;证明定值问题.2..从而四边形的面积为定值.【名师点睛】解决定值定点方法一般有两种:(1)从特别入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.3.解:(1),设左焦点,解得 椭圆方程为(2)由(1)可知椭圆右顶点设,以为直径的圆过即 ①联立直线与椭圆方程: ,代入到①或当时, 恒过当时, 恒过,但为椭圆右顶点,不符题意,故舍去恒过3.—》*)·~!·《$#|({,$—|—:¥。~\…,&—$…