实验六 线性系统的频域分析一. 实验目的(1)熟练掌握使用 MATLAB 命令绘制控制系统 Nyquist 图的方法;(2)能够分析控制系统 Nyquist 图的基本规律;(3)加深理解控制系统乃奎斯特稳定性判据的实际应用;(4)学会利用奈氏图设计控制系统;(5)熟练掌握运用 MATLAB 命令绘制控制系统伯德图的方法;(6)了解系统伯德图的一般规律及其频域指标的猎取方法;(7)熟练掌握运用伯德图分析控制系统稳定性的方法;(8)设计超前校正环节并绘制 Bode 图;(9)设计滞后校正环节并绘制 Bode 图。二. 实验原理及内容1、频率特性函数。频率特性函数为: 由下面的 MATLAB 语句可直接求出 G(jw)。i=sqrt(-1) % 求取-1 的平方根GW=polyval(num,i*w)./polyval(den,i*w)2、用 MATLAB 作奈魁斯特图。控制系统工具箱中提供了一个 MATLAB 函数 nyquist( ),该函数可以用来直接求解Nyquist 阵列或绘制奈氏图。当命令中不包含左端返回变量时,nyquist()函数仅在屏幕上产生奈氏图,命令调用格式为:nyquist(num,den) ; 作 Nyquist 图, nyquist(num,den,w); 作开环系统的奈氏曲线, 3、奈奎斯特稳定性判据(又称奈氏判据)反馈控制系统稳定的充分必要条件是当 ω 从-∞变到∞时,开环系统的奈氏曲线不穿过点(-1,j0)且逆时针包围临界点(-1,j0)点的圈数 R 等于开环传递函数的正实部极点数。4、用 MATLAB 作伯德图控制系统工具箱里提供的 bode()函数可以直接求取、绘制给定线性系统的伯德图。命令的调用格式为: [mag,phase,w]=bode(num,den) [mag,phase,w]=bode(num,den,w)由于伯德图是半对数坐标图且幅频图和相频图要同时在一个绘图窗口中绘制,因此,要用到半对数坐标绘图函数和子图命令。(1)对数坐标绘图函数利用工作空间中的向量 x,y 绘图,要调用 plot 函数,若要绘制对数或半对数坐标图,只需要用相应函数名取代 plot 即可,其余参数应用与 plot 完全一致。(2)子图命令MATLAB 允许将一个图形窗口分成多个子窗口,分别显示多个图形,这就要用到subplot()函数,其调用格式为:subplot(m,n,k)5、 用 MATLEB 求取稳定裕量 同前面介绍的求时域响应性能指标类似,由 MATLAB 里 bode()函数绘制的伯德图也可以采纳游动鼠标法求取系统的幅值裕量和相位裕量。 此外,控制系统工具箱中提供了 margin()函数来求取给定线性系统幅值裕量和相位裕量,该函数可以由下面格式来调用:margin(num...