非参数检验及 matlab 实现Kolmogorov—Smirnov test:检验两个样本是否有相同分布KstestTest statistics:[h,p,ksstat,cv] = kstest(x,CDF,alpha,type)x: 被测试的数据样本,以列向量输入(continuous distribution defined by cumulative distribution function)CDF:被检验的样本 cumulative distribution function,缺省值为 N(0,1)Alpha:显著性水平,缺省时为 0。05Type:字符输入.’unequal’(缺省值)检验两者分布是否相同 'larger' 检验 x 的 CDF 大于给定的 CDF 'smaller’ 检验 x 的 CDF 小于给定的 CDFh h=0 不拒绝原假设,即两个分布相同 h=1 拒绝原假设,即两个分布不同p :拒绝原假设的最小显著性水平ksstat :假设为真时,满足 student 分布cv :critical value/cutoff value,determining if ksstat is significant。Kstest2:[h,p,ks2stat] = kstest2(x1,x2,alpha,type)详见 ketestLilliefors test:检验两个样本是否有相同分布Test statistics:2—sided goodness-of—fit testlillietest[h,p,kstat,critval] = lillietest (x,alpha,distr,mctol)各参数参见 kstest,特别的,mctol 为使用蒙特卡洛方法计算 p 值Jarque-Bera test检验样本是否来自均值和方差未知的正态分布two-sided goodness-of-fit test假设:x 为正态分布test statistic:, where n is the sample size, s is the sample skewness, and k is the sample kurtosis。jbtest[h,p,jbstat,critval] = jbtest(x,alpha,mctol)各个参数意义详见 lillietest。Wilcoxon—Mann—Whitney Ranks Test检验两个样本是否来自于同一分布。以下function f=Wilcoxon_Rank_Test(x,y,alpha)直接是秩和检验方法,另有function f=Pre_Wilcoxon(x,y,alpha)是改进的秩和检验方法。区别在于样本的处理方式。function f=Wilcoxon_Rank_Test(x,y,alpha);%x,y are vectors %x,y can be at different lengthZ=[x;y];%z1 for ranking from small to large%z2 for place[z1,z2]=sort(Z,'ascend’); for i=1:size(x,1) for j=i:size(z1,1) if z1(j)==x(i) X(i,1)=j; end endend%X is the rank of x in vectorm=size(x,1);n=size(y,1);Ex=m*(m+n+1)/2;Varx=m*n*(m+n+1)/12;c=sqrt(Varx)*norminv(1—al...