导数在实际生活中的应用(一)教学目标:1、掌握解应用题的法,能分析出变量间的关系,建立起函数模型,确定自变量的定义域。2、能用导数的知识对实际问题求解。教学重难点:1、建立起函数模型,确定义域。 2、用导数的知识对实际问题求解课前预习:解应用题的思路与方法:(1)审题:理解题意,分析问题的主要关系(2)建模: (3)求解:求得数学问题的解(4)反馈: 典型例题:例 1、在边长为 60 厘米的正方形铁皮的,再把它的边沿虚线折起(如图),做成一个无盖的方底铁皮箱,箱底边长为多少时,箱子容积最大?最大容积是多少?例 2、某种圆柱形的饮料罐的容积一定时,如何确定它的高与底半径,使得所用材料最省?例 3、在平面直角坐标系内,过点(1,4)引一直线,截距都为正,且两截距之和最小,求这条直线的方程。课堂练习:1、内接于半径为 R 的半圆的矩形周长最大时,它的边长为 ;2、做一个容积为的方底无盖水箱,它的高为 ,材料最省?3、把长为 60㎝的铁丝围成矩形,它的长为 ,宽为 时,面积最大。4、把长 100㎝的铁丝分成两段,各围成正方形,怎样分法,?课堂小结: