1.1.1 任意角作者:杨周萍,江苏省羊尖高级中学教师,本教学设计获江苏省教学设计大赛二等奖.\s\up7()设计思想 当今世界随着知识经济的不断发展,对人的整体素质提出了前所未有的要求,尤其是对人的主动性、创造性、批判性思维的重视超过了以往任何时代.作为现代科学技术的基础和工具的数学,其修养是 21 世纪高科技时代人才必备的素养,调查表明年级越高,对数学学习感兴趣的学生越少,究其原因,大多是因为在数学学习中经历了太多的失败,逐步丧失学习信心.数学是抽象的,难学的,数学教育要通过数学学习活动本身来提高学习的兴趣就显得更为重要.所以在本课的设计中以理解学生、尊重学生为前提,从学生的原认知出发,以学生熟知的生活现象创设问题情境,导入新课,发动学生,营造和谐的师生关系和课堂氛围、为学生的智慧生成留下足够的空间.在教师的引导下,让学生学会用客观环境所提供的信息来加工自己的知识,完善自己的知识结构并在对问题不断地讨论和探索过程中自主地思考问题并提出问题、构建数学、应用数学、回顾反思所学,培养学生发现问题、研究问题、解决问题、应用反思的数学学习能力,学生在教师的引导下一旦投入活动,各个不同层次的学习者都会有发现和创新的机会和成果,有向同学、教师展示自己成果和才能的机会,能经常体验到数学学习的乐趣,从而增强学习数学的信心和兴趣,并进入良性循环,终身学习的欲望得以孕育、成长.让课堂教学真正成为学生终生学习的成长阶梯,真正“实现不同的人在数学学习中得到不同的发展”,特别是新课程所提出的对学生思维方法的培养,为学生进一步学习提供必要的数学准备.教学内容分析 本课时教学内容为引言和 1.1.1 任意角,是三角函数的开篇.“引言”提出了本章的中心问题,它是本章知识的生长点,特别是周期现象贯穿了本章教学内容的始终,它可以帮助学生很好的探索、理解同终边角、同直线角、范围角的集合表示的抽象形式.同时,周期也是三角函数的一个非常重要的性质,是把三角函数一个周期的性质推广到整个定义域的理论依据,是研究三角函数的核心概念,为学生学习、理解周期的抽象的代数定义作了一个很好的铺垫.因此,笔者认为,在三角函数的开篇课中应该按照引言中所提出的对周期性的研究大纲,把周期现象这一变化规律作为教学内容的一个重要组成部分实施教学,不能一带而过或不讲,要让学生对周期现象形成初步的感性认识和理性认识,为进一步学习与周期性相关的内容和理解...