专题讲座高中数学“空间向量与立体几何”的教学研究 一、“空间向量与立体几何”教学内容的整体把握(一)从不同的角度把握“空间向量与立体几何”的内容1.学习空间向量的必要性(1)必修课程中学习了平面向量知识,学习了用平面向量解决平面几何等相关问题的方法. 在立体几何的学习中理应运用空间向量解决更深入的问题.(2)“立体几何初步”尚有判定定理等没有证明,距离、角只介绍了有关概念及很简单的求解问题,用推理论证方法解决立体几何解决问题对于部分学生仍较困难.2. 知识结构空间向量为解决三维空间中图形的位置关系与度量问题提供了一个十分有效的工具.学生在运用空间向量解决有关直线、平面位置关系的问题时,可以到体会向量方法在研究几何图形中的巨大作用,可以减少繁琐的推理过程,直接通过公式计算解决问题.3.对“空间向量与立体几何”的研究方法的把握向量作为一种几何的研究工具具有与传统综合几何方法完全不同的特征,运用向量方法的过程是将几何问题转化为向量问题,通过向量计算(无论是一般的向量运算还是向量的坐标运算)得到向量结论,再将向量结论转化为几何结论的过程.那么运用向量方法研究立体几何用心 爱心 专心1问题过程是否就是纯粹向量计算的过程,空间想象与推理论证是否就不需要呢?回答是否定的.我们知道高中立体几何课程是小学、初中与大学课程的过渡内容,这个特点决定了其研究方法既具有几何直观与思辨的特征又具有一定代数化的特征.事实上,我们不难发现,在研究用空间向量表示几何元素、确定基向量、建立坐标系以及确定点的坐标或空间向量的坐标的过程中不仅有向量计算,还有空间想象和逻辑推理. 因此在“空间向量与立体几何”的教学中,我们不能只关注向量计算,而是应将研究方法定位在综合运用空间想象、逻辑推理和向量计算.4.灵活选择解决立体几何问题的方法《课标》指出“在教学中,可以鼓励学生灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题”.(1)充分认识综合法与向量法各自的优势与不足如何理解这个“灵活选择”?首先要使学生充分认识综合法与向量法各自的优势与不足,利用向量法,使立体几何问题转化为向量之间的代数运算,这种解决问题的方法与综合法相比有较强的规律可循,并减少构造辅助线的困扰,但向量方法并不总是简洁的,有时会加大运算量,而且可能产生计算错误,难以体现综合法对培养学生几何直观能力、空间想象能力和逻辑思维能力应有的价值,降低学生的兴趣...