1.3.1 三角函数的周期性\s\up7()教学分析 三角函数的周期性是在学习了三角函数的概念之后研究的,教材中,为学习三角函数的图象和性质提供了问题背景,因此,教学时要充分运用这些问题背景以突出本章“建立刻画周期性现象的数学模型”这一主题.周期函数的定义是教学中的一个难点.在教学中,可以从“周而复始的重复出现”出发,一步步地使语言精确化,通过“每隔一定时间出现”“自变量每增加或减少一个值,函数值就重复出现”等,逐步抽象出函数周期性的定义.教学中可以引导学生通过对三角函数实例的具体分析,帮助认识周期以及周期函数.因为在本节中,我们讨论的主题是三角函数的周期性,这一点更重要,在教学中不要对一般的周期函数作过多的讨论.三角函数的最小正周期是指三角函数所有周期中的最小正数.对于正弦函数、余弦函数的最小正周期是 2π 的结论,可以组织学生通过观察三角函数线的变化进行验证,进而通过本节“链接”中的内容了解其证明过程.不论是周期,还是最小正周期,都是对自变量 x 而言的,是自变量 x 的改变量.这一点正是解决例 2 的根据.教学时根据学生的实际,可以组织学生仿照例 2 推导出函数 y=Asin(ωx+φ)的周期为这一结论.三维目标 1.通过创设情境,如单摆运动、波浪、四季变化等,让学生感知周期现象;理解周期函数的概念;能熟练地求出简单三角函数的周期,并能根据周期函数的定义进行简单的拓展运用.2.通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物,并通过本节的学习,使学生进一步了解从特殊到一般的认识世界的科学方法,提高认识世界的能力和思维层次,为今后认识世界和探索世界打下坚实的基础.重点难点 教学重点:周期函数定义的理解,深化研究函数性质的思想方法.教学难点:周期函数概念的理解,最小正周期的意义及简单的应用.课时安排 1 课时\s\up7()导入新课 思路 1.人的情绪、体力、智力都有周期性的变化现象,在日常生活和工作中,人们常常有这样的自我感觉,有的时候体力充沛,心情愉快,思维敏捷;有的时候却疲倦乏力,心灰意冷,反应迟钝;也有的时候思绪不稳,喜怒无常,烦躁不安,糊涂健忘,这些感觉呈周期性发生,贯穿人的一生,这种有规律性的重复,我们称之为周期性现象.请同学们举出生活中存在周期现象的例子,在学生热烈的争论中引入新课....