3.2 二倍角的三角函数\s\up7()教学分析 “二倍角的三角函数”是在研究了两角和与差的三角函数的基础上,进一步研究具有“二倍角”关系的正弦、余弦、正切公式的,它既是两角和与差的正弦、余弦、正切公式的特殊化,又为以后求三角函数值、化简、证明提供了非常有用的理论工具;通过对二倍角的推导知道,二倍角的内涵是:揭示具有倍数关系的两个三角函数的运算规律,通过推导还让学生加深理解了高中数学由一般到特殊的化归思想;因此本节内容也是培养学生运算和逻辑推理能力的重要内容,对培养学生的探索精神和创新能力、发现问题和解决问题的能力都有着十分重要的意义.本节课通过教师提出问题、设置情境及对和角公式中 α、β 关系的特殊情形 α=β时的简化,让学生在探究中既感到自然、易于接受,还可清晰的知道和角的三角函数与倍角公式的联系,同时也让学生学会怎样发现规律及体会由一般到特殊的化归思想.这一切教师都要放心地让学生去做.因为《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验”.所谓体验,从教育的角度看是一种亲历亲为的活动,是一种积极参与活动的学习方式.让学生亲历经验,不但有助于通过多种活动和探究获取数学知识,更重要的是学生在体验中能够逐步掌握数学学习的一般规律和方法.三维目标 1.通过让学生探索、发现并推导二倍角公式,了解它们之间、以及它们与和角公式之间的内在联系,并通过强化题目的训练,加深对二倍角公式的理解,培养运算能力及逻辑推理能力,从而提高解决问题的能力.2.通过二倍角的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明.体会化归这一基本数学思想在发现中和求值、化简、恒等证明中所起的作用.使学生进一步掌握联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题、解决问题的能力.3.通过本节学习,引导学生领悟寻找数学规律的方法,培养学生的创新意识,以及善于发现和勇于探索的科学精神.重点难点 教学重点:二倍角三角函数公式的推导及其应用.教学难点:如何灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式.课时安排 2 课时\s\up7()第 1 课时导入新课 思路 1.(旧知导入)请学生回忆上两节共同探讨的和角公式、差角公式,并回忆这组公式的来龙去脉,然后找一个学生把这六个公式写在黑板上.教师引导学生:和角公式与差角公式是可以互相化归的.当两角相...