7 相关性[学习目标] 1.掌握相关关系的判断.2.会作散点图.3.体会化归思想的应用.知识点一 变量间的相关关系1.变量之间常见的关系函数关系变量之间的关系可以用函数表示相关关系变量之间有一定的联系,但不能完全用函数表示2.相关关系与函数关系的区别与联系类别区别联系函数关系① 函数关系中两个变量间是一种确定性关系;②函数是一种因果关系,有这样的因,必有这样的果.例如,圆的半径由 1增大为 2,其面积必然由 π 增大到 4π① 在一定的条件下可以相互转化,对于具有线性相关关系的两个变量来说,当求得其线性回归方程后,可以用一种确定性的关系对这两个变量间的取值进行评估;相关关系① 相关关系是一种非确定性关系.例如,吸烟与患肺癌之间的关系,两者之间虽然没有确定的函数关系,但吸烟多的人患肺癌的风险会大幅增加,两者之间即是一种非确定性的关系;②相关关系不一定是因果关系,也可能是伴随关系②相关关系在现实生活中大量存在,从某种意义上讲,函数关系是一种理想的关系模型,而相关关系是一种更为一般的情况知识点二 散点图及相关的概念1.散点图在考虑两个量的关系时,为了对变量之间的关系有一个大致的了解,人们通常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图.2.曲线拟合从散点图上可以看出,如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这样近似的过程称为曲线拟合.3.相关关系的分类(1)线性相关:若两个变量 x 和 y 的散点图中,所有点看上去都在一条直线附近波动,则称变量间是线性相关的.(2)非线性相关:若所有点看上去都在某条曲线(不是一条直线)附近波动,则称此相关为非线性相关的.此时,可以用一条曲线来拟合.4.不相关如果所有的点在散点图中没有显示任何关系,则称变量间是不相关的.思考 任意两个统计数据是否均可以作出散点图?答 可以,不管这两个统计量是否具备相关性,以一个变量值作为横坐标,另一个作为纵坐标,均可画出它的散点图.题型一 变量间相关关系的判断例 1 在下列两个变量的关系中,哪些是相关关系?① 正方形边长与面积之间的关系;② 作文水平与课外阅读量之间的关系;③ 农作物产量与施肥量之间的关系;④ 降雪量与交通事故的发生率之间的关系.解 两变量之间的关系有两种:函数关系与带有随机性的相关关系.①正方形的边长与面积之间的关系是...