3.4.1 基本不等式的证明学习目标 1.理解基本不等式的内容及证明.2.能熟练运用基本不等式来比较两个实数的大小.3.能初步运用基本不等式证明简单的不等式.知识点一 算术平均数与几何平均数思考 如图,AB 是圆 O 的直径,点 Q 是 AB 上任一点,AQ=a,BQ=b,过点 Q 作 PQ 垂直 AB于 Q,连结 AP,PB.如何用 a,b 表示 PO,PQ 的长度? 梳理 一般地,对于正数 a,b,为 a,b 的________平均数,为 a,b 的________平均数.两个正数的几何平均数不大于它们的算术平均数,即≤.其几何意义如图中的 PO≥PQ.知识点二 基本不等式及其常见推论思考 如何证明不等式≤(a>0,b>0)? 梳理 ≤(a>0,b>0).当对正数 a,b 赋予不同的值时,可得以下推论:(1)ab≤()2≤(a,b∈R);(2)+≥2(a,b 同号);(3)当 ab>0 时,+≥2;当 ab<0 时,+≤-2;(4)a2+b2+c2≥ab+bc+ca(a,b,c∈R).类型一 常见推论的证明例 1 证明不等式 a2+b2≥2ab(a,b∈R).引申探究证明不等式()2≤(a,b∈R). 反思与感悟 (1)本例证明的不等式成立的条件是 a,b∈R,与基本不等式不同.(2)本例使用的作差法与不等式性质是证明中常用的方法.跟踪训练 1 已知 a,b,c 为任意的实数,求证:a2+b2+c2≥ab+bc+ca. 类型二 用基本不等式证明不等式例 2 已知 x,y 都是正数.求证:(1)+≥2;(2)(x+y)(x2+y2)(x3+y3)≥8x3y3. 反思与感悟 利用基本不等式证明不等式的策略与注意事项(1)策略:从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以“已知”看“可知”,逐步推向“未知”.(2)注意事项:① 多次使用基本不等式时,要注意等号能否成立;②累加法是不等式证明中的一种常用方法,证明不等式时注意使用;③对不能直接使用基本不等式的证明可重新组合,形成基本不等式模型,再使用.跟踪训练 2 已知 a,b,c 都是正实数,求证:(a+b)(b+c)·(c+a)≥8abc. 类型三 用基本不等式比大小例 3 某工厂生产某种产品,第一年产量为 A,第二年的增长率为 a,第三年的增长率为 b,这两年的平均增长率为 x(a,b,x 均大于零),则 x 与的大小关系是________.反思与感悟 基本不等式≥一端为和,一端为积,使用基本不等式比大小要擅于利用这个桥梁化和为积或者化积为和.跟踪训练 3 设 a>b>1,P=,Q=,R=lg ,则 P,Q,R 的大小...