情形一:积分区域关于坐标轴对称定理4 设二元函数在平面区域连续,且关于轴对称,则1)当(即是关于的奇函数)时,有 .2)当(即是关于的偶函数)时,有 。 其中是由轴分割所得到的一半区域。例5 计算,其中为由与围成的区域。解:如图所示,积分区域关于轴对称,且即是 关 于的 奇 函 数 , 由 定 理 1 有。类似地,有:定理5 设二元函数在平面区域连续,且关于轴对称,则其中是由轴分割所得到的一半区域。例 6 计 算其 中为 由所围.解:如图所示,关于轴对称,并且,即被积分函数是关于轴的偶函数,由对称性定理结论有:.定理6 设二元函数在平面区域连续,且关于轴和轴都对称,则(1)当或时,有 。(2)当时,有其中为由轴和轴分割所的到的1/4区域。9例7 计算二重积分,其中: .解:如图所示,关于轴和轴均对称,且被积分函数关于和是偶函数,即有,由定理2,得其 中是的 第 一 象 限 部 分 , 由 对 称 性 知 ,,故。情形二、积分区域关于原点对称定理7 设平面区域,且关于原点对称,则当上连续函数满足1)时,有2)时,有。 例8 计算二重积分,为与所围区域.解:如图所示,区域关于原点对称,对于被积函数,有,有定理7,得。情形三、积分区域关于直线对称定理8 设二元函数在平面区域连续,且,关于直线对称,则1); .2)当时,有.3)当时,有.例9 求,为所围。解:积分区域关于直线对称,由定理8,得,故 .类似地,可得:定理9 设二元函数在平面区域连续,且,关于直线对称,则 (1)当,则有;(2)当,则有.例10 计算,其中为区域:, 。解:如图所示,积分区域关于直线对称,且满足,由以上性质,得:.注:在进行二重积分计算时,善于观察被积函数的积分区域的特点,注意兼顾被积函数的奇偶性和积分区域的对称性,恰当地利用对称方法解题,可以避开繁琐计算,使二重积分的解答大大简化。