第 1 课时 直线的倾斜角和斜率[核心必知]1.直线的倾斜角(1)倾斜角的概念.在平面直角坐标系中,对于一条与 x 轴相交的直线 l,把 x 轴(正方向)按逆时针方向绕着交点旋转到和直线 l 重合所成的角,叫作直线 l 的倾斜角.(2)倾斜角的取值范围.直线的倾斜角 α 的取值范围是 0°≤α<180°.当直线 l 和 x 轴平行时,倾斜角为0°.2.斜率的概念及斜率公式定义把一条直线的倾斜角不等于 90°的角 α 的正切值叫做这条直线的斜率,通常用 k 表示,即 k=tan α取值范围当 α=0°时,k=0当 0°<α<90°时,k>0当 90°<α<180°时,k<0当 α=90°时,斜率不存在续表过两点的直线的斜率公式经过两点 P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为 k=[问题思考]1.由直线倾斜角的大小能确定直线的位置吗?提示:只由直线的倾斜角不能确定直线的位置,因为倾斜角只反映了直线相对 x 轴的倾斜程度.2.“斜率是倾斜角的正切值”这句话对吗?提示:不对.90°角的正切值是不存在的.3.直线的倾斜角越大,直线的斜率也越大,这句话对吗?提示:这句话是不对的,当倾斜角 α=0°时,k=0;当 0°<α<90°时,k>0,并且随 α 的增大 k 也增大;当 α=90°时,k 不存在; 当 90°<α<180°时,k<0,并且随 α 的增大 k 也增大.讲一讲1.一条直线 l 与 x 轴相交,其向上的方向与 y 轴正方向所成的角为 α(0°<α<90°),则其倾斜角为( )A.α B.180°-αC.180°-α 或 90°-α D.90°+α 或 90°-α[尝试解答] 选 D 如图,当直线 l 向上方向的部分在 y 轴左侧时,倾斜角为 90°+α;当直线 l 向上方向的部分在 y 轴右侧时,倾斜角为 90°-α.若把条件改为“直线向上的方向与 x 轴的负方向所成的角为 α”其他不变,结论将如何? 选 B 通过画图可知.当 α 为锐角时,l 的倾斜角为 180°-α.当 α 为钝角时,l 的倾斜角为 180°-α.当 α 为 90°角时,l 的倾斜角为 90°. 求直线的倾斜角主要是根据定义来求,解题的关键是根据题意画出图形,找准倾斜角,有时要根据情况讨论,讨论的常见情形有:① 0°角;②锐角;③ 90°角;④钝角.练一练1.设直线 l1 与 x 轴的交点为 P,且倾斜角为 α,若将其绕点 P 按逆时针方向旋转45°,得到直线 l2的倾斜角为 α+45°,试求 α 的取值范围.解:由于直线 l1与...