第二章 方程(组)与不等式(组)§2.1 整式方程(组)中考数学 ( 北京专用 )2014-2018 年北京中考题组五年中考1.(2018 北京 ,3,2 分 ) 方程组 的解为 ( )A. B. C. D. 3,3814xyxy12xy12xy21xy21xy答案 D ①×3-② 得 5y=-5, 解得 y=-1, 把 y=-1 代入①得 x=2, 所以方程组的解为 故选 D.3,3814,xyxy①②2,1.xy2.(2017 北京 ,12,3 分 ) 某活动小组购买了 4 个篮球和 5 个足球 , 一共花费了 435 元 , 其中篮球的单价比足球的单价多 3 元 , 求篮球的单价和足球的单价 . 设篮球的单价为 x 元 , 足球的单价为 y 元 , 依题意 , 可列方程组为 .答案 345435xyxy 解析 由 4 个篮球和 5 个足球共花费 435 元 , 可得 4x+5y=435. 由篮球的单价比足球的单价多 3 元 ,可得 x=y+3. 故可列方程组为 3,45435.xyxy 3.(2015 北京 ,14,3 分 ) 关于 x 的一元二次方程 ax2+bx+ =0 有两个相等的实数根 , 写出一组满足条件的实数 a,b 的值 :a= ,b= .14答案 1;1( 满足 a=b2(a≠0) 即可 )解析 方程为一元二次方程 , 且有两个相等的实数根 ,∴a≠0,Δ=b2-a=0.∴a=b2(a≠0). 例如 a=1,b=1. 答案不唯一 .4.(2018 北京 ,20,5 分 ) 关于 x 的一元二次方程 ax2+bx+1=0.(1) 当 b=a+2 时 , 利用根的判别式判断方程根的情况 ;(2) 若方程有两个相等的实数根 , 写出一组满足条件的 a,b 的值 , 并求此时方程的根 .解析 (1) 依题意 , 得 Δ=(a+2)2-4a=a2+4>0.故方程有两个不相等的实数根 .(2) 由题意可知 ,a≠0,Δ=b2-4a=0.答案不唯一 , 如 : 当 b=2,a=1 时 , 方程为 x2+2x+1=0,∴(x+1)2=0,∴x1=x2=-1.5.(2017 北京 ,21,5 分 ) 关于 x 的一元二次方程 x2-(k+3)x+2k+2=0.(1) 求证 : 方程总有两个实数根 ;(2) 若方程有一个根小于 1, 求 k 的取值范围 .解析 (1) 证明 : 依题意 , 得 Δ=[-(k+3)]2-4(2k+2)=(k-1)2. (k-1)2≥0,∴ 方程总有两个实数根 .(2) 由求根公式 , 得 x= ,∴x1=2,x2=k+1. 方程有一个根小于 1,∴k+1<1,∴k<0,即 k 的取值范围是 k<0.[ (3)](1)2kk 6.(2016 北京 ,20,5 分 ) 关于 x 的一元二次方程 x2+(2m+1)x+m2-1=0 有两...