中考专题-------三角形一.选择题(共3小题)1.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A.a2B.a2C.a2D.a2考点:全等三角形的判定与性质;正方形的性质.专题:几何图形问题;压轴题.分析:过E作EP⊥BC于点P,EQ⊥CD于点Q,△EPM≌△EQN,利用四边形EMCN的面积等于正方形PCQE的面积求解.解答:解:过E作EP⊥BC于点P,EQ⊥CD于点Q, 四边形ABCD是正方形,∴∠BCD=90°,又 ∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°, 三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ, AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EQ,四边形PCQE是正方形,在△EPM和△EQN中,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形PCQE的面积 正方形ABCD的边长为a,∴AC=a, EC=2AE,∴EC=a,∴EP=PC=a,∴正方形PCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:D.点评:本题主要考查了正方形的性质及全等三角形的判定及性质,解题的关键是作出辅助线,证出△EPM≌△EQN.2.如图∠A=∠ABC=∠C=45°,E、F分别是AB、BC的中点,则下列结论,①EF⊥BD,②EF=BD,③∠ADC=∠BEF+∠BFE,④AD=DC,其中正确的是()A.①②③④B.①②③C.①②④D.②③④考点:三角形中位线定理;全等三角形的判定与性质.专题:压轴题.分析:根据三角形的中位线定理“三角形的中位线平行于第三边”同时利用三角形的全等性质求解.解答:解:如下图所示:连接AC,延长BD交AC于点M,延长AD交BC于Q,延长CD交AB于P. ∠ABC=∠C=45°∴CP⊥AB ∠ABC=∠A=45°∴AQ⊥BC点D为两条高的交点,所以BM为AC边上的高,即:BM⊥AC.由中位线定理可得EF∥AC,EF=AC∴BD⊥EF,故①正确. ∠DBQ+∠DCA=45°,∠DCA+∠CAQ=45°,∴∠DBQ=∠CAQ, ∠A=∠ABC,∴AQ=BQ, ∠BQD=∠AQC=90°,∴根据以上条件得△AQC≌△BQD,∴BD=AC∴EF=AC,故②正确. ∠A=∠ABC=∠C=45°∴∠DAC+∠DCA=180°﹣(∠A+∠ABC+∠C)=45°∴∠ADC=180°﹣(∠DAC+∠DCA)=135°=∠BEF+∠BFE=180°﹣∠ABC故③∠ADC=∠BEF+∠BFE成立;无法证明AD=CD,故④错误.故选B.点评:本题考点在于三角形的中位线和三角形全等的判断及应用.3.四边形ABCD中,AC和BD交于点E,若AC平分∠DAB,且AB=AE,AC=AD,有以下四个命题:①AC⊥BD;②BC=DE;③∠DBC=∠DAB;④AB=BE=AE.其中命题一定成立的是()A.①②B.②③C.①③D.②④考点:全等三角形的判定与性质;等边三角形的性质.专题:压轴题.分析:根据等腰三角形的性质,等边三角形的判定,圆内接四边形的性质,全等三角形的性质判断各选项是否正确即可.解答:解: AB=AE,一个三角形的直角边和斜边一定不相等,∴AC不垂直于BD,①错误;利用边角边定理可证得△ADE≌△ABC,那么BC=DE,②正确;由△ADE≌△ABC可得∠ADE=∠ACB,那么A,B,C,D四点共圆,∴∠DBC=∠DAC=∠DAB,③正确;△ABE不一定是等边三角形,那么④不一定正确;②③正确,故选B.点评:此题主要考查了全等三角形的性质,以及直角三角形中斜边最长;全等三角形的对应边相等;等边三角形的三边相等.二.填空题(共6小题)4.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,⋯如此继续下去,结果如下表,则an=3n+1(用含n的代数式表示).考点:等边三角形的性质.专题:压轴题;规律型.分析:根据图跟表我们可以看出n代表所剪次数,an代表小正三角形的个数,也可以根据图形找出规律加以求解.解答:解:由图可知没剪的时候,有一个三角形,以后每剪一次就多出三个,所以总的个数3n+1.故答案为:3n+1.点评:此题主要考验学生的逻辑思维能力以及应变能力.5.如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成△PAB,△PBC,△PAC均是等腰三角形,则满足上述条件的所有点P的个数为6个.考点:等腰三角形的判定与性质.专题:压轴题.分析:根据线段...