电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

八年级数学上册 第十二章 全等三角形 12.2三角形全等的判定(1)导学案(新版)新人教版-(新版)新人教版初中八年级上册数学学案VIP免费

八年级数学上册 第十二章 全等三角形 12.2三角形全等的判定(1)导学案(新版)新人教版-(新版)新人教版初中八年级上册数学学案_第1页
1/4
八年级数学上册 第十二章 全等三角形 12.2三角形全等的判定(1)导学案(新版)新人教版-(新版)新人教版初中八年级上册数学学案_第2页
2/4
八年级数学上册 第十二章 全等三角形 12.2三角形全等的判定(1)导学案(新版)新人教版-(新版)新人教版初中八年级上册数学学案_第3页
3/4
12.2三角形全等的判定(1)1.掌握三角形全等的判定(SSS),掌握简单的证明格式.2.初步体会尺规作图.重、难点:掌握三角形全等的判定(SSS).一、自学指导自学1:自学课本P35-36页“探究1,探究2及例1”,掌握三角形全等的判定条件SSS,并掌握简单的证明格式,了解三角形的稳定性,完成填空.(7分钟)画△ABC:①使AB=3cm;②使AB=3cm,BC=4cm;③使AB=3cm,BC=4cm,AC=5cm;④使∠A=30°;⑤使∠A=30°,∠B=50°;⑥使∠A=30°,∠B=50°,∠C=100°.每画完一个,与同桌画的三角形对比一下,形状与大小是一样的吗?总结归纳:(1)已知三角形的一个或两个元素,三角形的形状和大小不能确定,三个角相等的三角形形状确定,但大小不确定.(2)三边分别相等的两个三角形全等,简写成边边边或SSS.(3)三角形三边的长度确定了,这个三角形的形状、大小也就确定了.自学2:自学课本P36-37页“探究与例题”,利用尺规作图画一个角等于已知角,初步体会尺规作图.(3分钟)点拨精讲:用尺规作图作一个角等于已知角的依据是“三边对应相等的两个三角形全等”,可通过添加辅助线构造全等三角形加以证明.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.在△ABC和△DEF中,若AB=DE,BC=EF,AC=DF,则△ABC≌△DEF.2.若两个三角形全等,则它们的三边对应相等;反之,若两个三角形的三边对应相等,则这两个三角形全等.3.下列命题正确的是(A)A.有一边对应相等的两个等边三角形全等B.有两边对应相等的两个等腰三角形全等C.有一边对应相等的两个等腰三角形全等D.有一边对应相等的两个直角三角形全等4.已知AB=3,BC=4,AC=6,EF=3,FG=4,要使△ABC≌△EFG,则EG=6.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1如图,AB=AD,CB=CD,求证:(1)△ABC≌△ADC;(2)∠B=∠D.证明:(1)连接AC,在△ABC与△ADC中,∴△ABC≌△ADC(SSS).(2)∵△ABC≌△ADC,∴∠B=∠D.点拨精讲:在证明过程中善于挖掘如“公共边”这个隐含条件,可以考虑添加辅助线.探究2如图,△ABC是一个风筝架,AB=AC,AD是连接A与BC中点D的支架,求证:AD⊥BC.证明:∵点D的BC中点,∴BD=CD,∴在△ABD与△ACD中,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC,∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,∴AD⊥BC.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.如图,AD=BC,AC=BD,求证:(1)∠DAB=∠CBA;(2)∠ACD=∠BDC.证明:(1)在△ABD与△BAC中,∴△ABD≌△BAC(SSS),∴∠DAB=∠CBA.(2)在△ADC与△BCD中,∴△ADC≌△BCD(SSS),∴∠ACD=∠BDC.点拨精讲:三角形全等的判定与性质的应用经常交替使用.(3分钟)本节课我们探索得到了三角形全等的条件,发现了证明三角形全等的一个规律SSS,并利用它可以证明简单的三角形全等问题.添加辅助线构造公共边,可以为证明两个三角形全等提供条件,证明两个三角形全等是证明线段相等或角相等的重要方法.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

八年级数学上册 第十二章 全等三角形 12.2三角形全等的判定(1)导学案(新版)新人教版-(新版)新人教版初中八年级上册数学学案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部