12.2三角形全等的判定(3)理解和掌握全等三角形判定方法3——“角边角”,判定方法4——“角角边”,能运用它们判定两个三角形全等.重、难点:理解和掌握全等三角形判定方法3和判定方法4及应用.一、自学指导自学1:自学课本P39-40页“探究4、例3”,理解和掌握全等三角形判定方法“ASA”,完成填空.(5分钟)总结归纳:两角和它们的夹边分别对应相等的两个三角形全等,简称角边角或ASA.自学2:自学课本P40-41页“例4、思考”,理解和掌握全等三角形判定方法“AAS”,试总结全等三角形判定方法.(5分钟)总结归纳:(1)两个角和其中一个角的对边分别相等的两个三角形全等,简称角角边或AAS.(2)三角形全等的条件至少需要三对相等的元素(其中至少需要一条边相等).二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.能确定△ABC≌△DEF的条件是(D)A.AB=DE,BC=EF,∠A=∠EB.AB=DE,BC=EF,∠C=∠EC.∠A=∠E,AB=EF,∠B=∠DD.∠A=∠D,AB=DE,∠B=∠E2.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是(B)A.甲和乙B.乙和丙C.只有乙D.只有丙3.AD是△ABC的角平分线,作DE⊥AB于E,DF⊥AC于F,下列结论错误的是(C)A.DE=DFB.AE=AFC.BD=CDD.∠ADE=∠ADF点拨精讲:应用AAS证三角形全等时应注意边是对应角的对边.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ.求证:HN=PM.证明:∵MQ⊥PN,NR⊥MP,∴∠PQM=90°,∠HQN=90°,∴∠P+∠PNR=90°,∠QHN+∠PNR=90°,∴∠P=∠QHN.在△PQM与△HQN中∴△PQM≌△HQN,∴HN=PM.点拨精讲:有直角三角形就有互余的角,利用同角(等角)的余角相等是证角相等的常用方法.探究2求证:三角形一边的两端点到这边的中线或中线延长线的距离相等.如图,AD为△ABC的中线,且CF⊥AD于点F,BE⊥AD,交AD的延长线于点E,求证:BE=CF.证法1:∵AD为△ABC的中线,∴BD=CD.∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°.在△BED与△CFD中∴△BED≌△CFD(AAS),∴BE=CF.证法2:∵S△ABD=AD·BE,S△ACD=AD·CF,且S△ABD=S△ACD(等底同高的两个三角形面积相等),∴AD·BE=AD·CF,∴BE=CF.点拨精讲:对于文字命题的证明,应先根据题意画出图形,再结合题意,写出已知、求证,最后证明;用“面积法”证线段相等,可使问题简化.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.如图,PM=PN,∠M=∠N.求证:AM=BN.证明:在△PMB与△PNA中∴△PMB≌△PNA,∴PB=PA,∴PM-PA=PN-PB,∴AM=BN.(3分钟)已知两个角和一条边对应相等得全等,三个角对应相等不能确定全等.三角形全等的判定和全等三角形的性质常在一起进行综合应用.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)