黄金分割【学习目标】1.知道黄金分割的定义;会找一条线段的黄金分割点;会判断某一点是否为一条线段的黄金分割点.2.通过找一条线段的黄金分割点,培养学生的理解与动手能力.3.理解黄金分割的现实意义,并能动手找到和制作黄金分割点和图形,让学生认识数学与人类生活的密切联系.【学习重点】了解黄金分割的意义并能运用.【学习难点】找出黄金分割点和作黄金矩形.情景导入生成问题1.如图,在矩形ABCD中,E在AD上,EF⊥BE,交CD于F,连接BF,则图中与△ABE一定相似的三角形是(B)A.△EFBB.△DEFC.△CFBD.△EFB和△DEF2.如图,在边长为1的正方形网格中有点P,A,B,C,则图中所形成的三角形中,相似三角形是△APB∽△CPA.自学互研生成能力先阅读教材P95-96页的内容,然后解答下列问题:1.黄金分割的意义:如图,点C把线段AB分成两条线段AC和BC,如果=,那么称线段AB被点C黄金分割,其中点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比,近似数为0.618.2.黄金分割点的作法:如图所示,已知线段AB.(1)过B作BD⊥AB使BD=AB;(2)连接AD,在DA上截取DE=DB;(3)在AB上截取AC=AE,则点C即为线段AB的黄金分割点.1.动手量一量,五角星图案中,线段AC、BC的长度,然后计算与,它们的值相等吗?教学说明:学生亲自动手操作,得到黄金比并加深对黄金分割的理解.归纳结论:在线段AB上,点C把线段AB分成两条线段AC和BC,如果=,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.2.计算黄金比:见教材P96页例4.3.探究教材P96页“想一想”.内容:古希腊时的巴台农神庙,将图中的虚线表示的矩形画成如图中的矩形ABCD,以矩形ABCD的宽为边在其内部作正方形AEFD,那么,我们可以惊奇的发现=.提出问题:点E是AB的黄金分割点吗?矩形ABCD宽与长的比是黄金比吗?观看多媒体演示的内容,观察与思考、交流、讨论、解决问题.问题解决:由=,可以得到=即=.所以点E是AB的黄金分割点.对应练习:1.已知点C是线段AB的黄金分割点,且AC>BC,则下列等式成立的是(C)A.AB2=AC·CBB.CB2=AC·ABC.AC2=CB·ABD.AC2=2AB·BC2.如图,点C把线段AB分成两条线段AC和BC,如果=,那么称线段AB被点C黄金分割,AC与AB的比叫做黄金比,其比值是(A)A.B.C.D.3.已知C是线段AB的一个黄金分割点,则AC∶AB为(D)A.B.C.D.或交流展示生成新知学科1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块黄金分割的有关概念检测反馈达成目标1.下列说法正确的是(B)A.每条线段有且仅有一个黄金分割点B.黄金分割点分一条线段为两条线段,其中较长的线段约是这条线段的0.618倍C.若点C把线段AB黄金分割,则AC2=AB·BCD.以上说法都不对2.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽约为(A)A.12.36cmB.13.6cmC.32.36cmD.7.64cm3.如图,在平行四边形ABCD中,点E是边BC上的黄金分割点,且BE>CE,AE与BD相交于点F.那么BF∶FD的值为.4.五角星是我们常见的图形,如图是一个标准的正五角星,其中,点C,D分别是线段AB的黄金分割点,AB=20cm,求EC+CD的长.解:∵点D为线段AB的黄金分割点(AD>BD),∴AD=,AB=(10-10)cm.∵EC+CD=AC+CD=AD,∴EC+CD=(10-10)cm.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________