第七章数列、推理与证明热点探究训练4数列与函数、不等式A组基础过关1.(2017·苏州期中)设数列{an}的前n项和为Sn,满足2Sn=an+1-2n+1+1,且a1,a2+5,a3成等差数列.(1)求a1,a2的值;(2)求证:数列{an+2n}是等比数列,并求数列{an}的通项公式.[解](1)由已知,得2a1=a2-3①,2(a1+a2)=a3-7②,又因为a1,a2+5,a3成等差数列,所以a1+a3=2a2+10③,解①②③,得a1=1,a2=54分(2)由已知,n∈N+时,2(Sn+1-Sn)=an+2-an+1-2n+2+2n+1,即an+2=3an+1+2n+1,即an+1=3an+2n(n≥2),8分由(1)得,a2=3a1+2,∴an+1=3an+2n(n∈N+).从而有an+1+2n+1=3an+2n+2n+1=3an+3×2n=3(an+2n).又a1+2>0,∴an+2n>0,∴=3.∴数列{an+2n}是等比数列,且公比为3.∴an+2n=(a1+2)×3n-1=3n,即an=3n-2n.14分2.(2017·泰州中学高三模底考试)已知数列{an}的前n项和Sn满足:Sn=t(Sn-an+1)(t为常数,且t≠0,t≠1).(1)求{an}的通项公式;(2)设bn=a+Sn·an,若数列{bn}为等比数列,求t的值;(3)在满足条件(2)的情形下,设cn=4an+1,数列{cn}的前n项和为Tn,若不等式≥2n-7对任意的n∈N+恒成立,求实数k的取值范围.【导学号:62172212】[解](1)当n=1时,S1=t(S1-a1+1),得a1=t.当n≥2时,由Sn=t(Sn-an+1),即(1-t)Sn=-tan+t,①得(1-t)Sn-1=-tan-1+t,②①-②,得(1-t)an=-tan+tan-1,即an=tan-1,∴=t(n≥2),∴{an}是等比数列,且公比是t,∴an=tn.4分(2)由(1)知,bn=(tn)2+·tn,即bn=,若数列{bn}为等比数列,则有b=b1·b3,而b1=2t2,b2=t3(2t+1),b3=t4(2t2+t+1),故2=(2t2)·t4(2t2+t+1),解得t=,再将t=代入bn,得bn=,由=,知{bn}为等比数列,∴t=.8分(3)由t=,知an=n,∴cn=4n+1,∴Tn=4×+n=4+n-,由不等式≥2n-7恒成立,得3k≥恒成立,设dn=,由dn+1-dn=-=,∴当n≤4时,dn+1>dn,当n≥4时,dn+10时,因为an∈Z,则d≥1,且d∈Z,所以数列{an}中必有一项an>0.为了使得{an}为“等比源数列”,只需要{an}中存在第n项,第k项(mm>2),使得S2,Sm-S2,Sn...