电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(江苏专用)高考数学大一轮复习 第六章 数列 6.4 数列求和教师用书 理 苏教版-苏教版高三全册数学试题VIP免费

(江苏专用)高考数学大一轮复习 第六章 数列 6.4 数列求和教师用书 理 苏教版-苏教版高三全册数学试题_第1页
1/13
(江苏专用)高考数学大一轮复习 第六章 数列 6.4 数列求和教师用书 理 苏教版-苏教版高三全册数学试题_第2页
2/13
(江苏专用)高考数学大一轮复习 第六章 数列 6.4 数列求和教师用书 理 苏教版-苏教版高三全册数学试题_第3页
3/13
第六章数列6.4数列求和教师用书理苏教版1.等差数列的前n项和公式Sn==na1+d.2.等比数列的前n项和公式Sn=3.一些常见数列的前n项和公式(1)1+2+3+4+…+n=.(2)1+3+5+7+…+2n-1=n2.(3)2+4+6+8+…+2n=n(n+1).(4)12+22+…+n2=.【知识拓展】数列求和的常用方法(1)公式法等差、等比数列或可化为等差、等比数列的可直接使用公式求和.(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.常见的裂项公式①=-;②=;③=-.(4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.(6)并项求和法一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如an=(-1)nf(n)类型,可采用两项合并求解.例如,Sn=1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5050.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果数列{an}为等比数列,且公比不等于1,则其前n项和Sn=.(√)(2)当n≥2时,=(-).(√)(3)求Sn=a+2a2+3a3+…+nan之和时,只要把上式等号两边同时乘以a即可根据错位相减法求得.(×)(4)数列{+2n-1}的前n项和为n2+.(×)(5)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin21°+sin22°+sin23°+…+sin288°+sin289°=44.5.(√)1.(2016·南京模拟)设{an}是公差不为0的等差数列,a1=2,且a1,a3,a6成等比数列,则{an}的前n项和Sn=__________.答案解析设等差数列的公差为d,则a1=2,a3=2+2d,a6=2+5d.又 a1,a3,a6成等比数列,∴a=a1·a6.即(2+2d)2=2(2+5d),整理得2d2-d=0. d≠0,∴d=.∴Sn=na1+d=+n.2.(教材改编)数列{an}中,an=,若{an}的前n项和Sn=,则n=________.答案2017解析an==-,Sn=a1+a2+…+an=(1-+-+…+-)=1-=.令=,得n=2017.3.数列{an}的通项公式为an=(-1)n-1·(4n-3),则它的前100项之和S100=________.答案-200解析S100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.4.若数列{an}的通项公式为an=2n+2n-1,则数列{an}的前n项和Sn=________.答案2n+1-2+n2解析Sn=+=2n+1-2+n2.5.数列{an}的通项公式为an=ncos,其前n项和为Sn,则S2017=________.答案1008解析因为数列an=ncos呈周期性变化,观察此数列规律如下:a1=0,a2=-2,a3=0,a4=4.故S4=a1+a2+a3+a4=2.a5=0,a6=-6,a7=0,a8=8,故a5+a6+a7+a8=2,∴周期T=4.∴S2017=S2016+a2017=×2+2017·cosπ=1008.题型一分组转化法求和例1已知数列{an}的前n项和Sn=,n∈N*.(1)求数列{an}的通项公式;(2)设bn=+(-1)nan,求数列{bn}的前2n项和.解(1)当n=1时,a1=S1=1;当n≥2时,an=Sn-Sn-1=-=n.a1也满足an=n,故数列{an}的通项公式为an=n.(2)由(1)知an=n,故bn=2n+(-1)nn.记数列{bn}的前2n项和为T2n,则T2n=(21+22+…+22n)+(-1+2-3+4-…+2n).记A=21+22+…+22n,B=-1+2-3+4-…+2n,则A==22n+1-2,B=(-1+2)+(-3+4)+…+[-(2n-1)+2n]=n.故数列{bn}的前2n项和T2n=A+B=22n+1+n-2.引申探究例1(2)中,求数列{bn}的前n项和Tn.解由(1)知bn=2n+(-1)n·n.当n为偶数时,Tn=(21+22+…+2n)+[-1+2-3+4-…-(n-1)+n]=+=2n+1+-2;当n为奇数时,Tn=(21+22+…+2n)+[-1+2-3+4-…-(n-2)+(n-1)-n]=2n+1-2+-n=2n+1--.∴Tn=思维升华分组转化法求和的常见类型(1)若an=bn±cn,且{bn},{cn}为等差或等比数列,可采用分组求和法求{an}的前n项和.(2)通项公式为an=的数列,其中数列{bn},{cn}是等比数列或等差数列,可采用分组求和法求和.提醒:某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(江苏专用)高考数学大一轮复习 第六章 数列 6.4 数列求和教师用书 理 苏教版-苏教版高三全册数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部