电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

圆锥曲线解题方法技巧归纳(整理)VIP免费

圆锥曲线解题方法技巧归纳(整理)_第1页
1/20
圆锥曲线解题方法技巧归纳(整理)_第2页
2/20
圆锥曲线解题方法技巧归纳(整理)_第3页
3/20
圆锥曲线解题方法技巧归纳一、知识储备:1.直线方程的形式(1)直线方程的形式有五种:点斜式、两点式、斜截式、截距式、一般式。(2)与直线相关的重要内容①倾斜角与斜率tan,[0,)k②点到直线的距离0022AxByCdAB③夹角公式:2121tan1kkkk④两直线距离公式(3)弦长公式直线ykxb与圆锥曲线两交点1122(,),(,)AxyBxy间的距离:2121ABkxx221212(1)[()4]kxxxx或12211AByyk(若A点为交点,另一点不在圆锥曲线上,上式仍然成立。)(4)两条直线的位置关系①1212llkk=-1②212121//bbkkll且2、圆锥曲线方程及性质(1)、椭圆的方程的形式(三种形式)标准方程:221(0,0)xymnmnmn且距离式方程:2222()()2xcyxcya参数方程:cos,sinxayb(2)、双曲线的方程的形式有两种标准方程:221(0)xymnmn参数方程:距离式方程:2222|()()|2xcyxcya(3)、三种圆锥曲线的通径22222bbpaa椭圆:;双曲线:;抛物线:(4)、圆锥曲线的定义(5)、焦点三角形面积公式:122tan2FPFPb在椭圆上时,S122cot2FPFPb在双曲线上时,S(其中2221212121212||||4,cos,||||cos||||PFPFcFPFPFPFPFPFPFPF?)(6)、记住焦半径公式:(1)00;xaexaey椭圆焦点在轴上时为焦点在y轴上时为,可简记为“左加右减,上加下减”。(2)0||xexa双曲线焦点在轴上时为(3)11||,||22ppxxy抛物线焦点在轴上时为焦点在y轴上时为(6)、椭圆和双曲线的基本量三角形二、方法储备1、点差法(中点弦问题)设11,yxA、22,yxB,的弦AB中点则有两式相减得3421212121yyyyxxxxABk=2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办?设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0,以及根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)AxyBxy,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元······,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A、B、F共线解决之。若有向量的关系,则寻找坐标之间的关系,根与系数的关系结合消元处理。一旦设直线为ykxb,就意味着k存在。例1、已知三角形ABC的三个顶点均在椭圆805422yx上,且点A是椭圆短轴的一个端点(点A在y轴正半轴上).(1)若三角形ABC的重心是椭圆的右焦点,试求直线BC的方程;(2)若角A为090,AD垂直BC于D,试求点D的轨迹方程.分析:第一问抓住“重心”,利用点差法及重心坐标公式可求出中点弦BC的斜率,从而写出直线BC的方程。第二问抓住角A为090可得出AB⊥AC,从而得016)(14212121yyyyxx,然后利用联立消元法及交轨法求出点D的轨迹方程;解:(1)设B(1x,1y),C(2x,2y),BC中点为(00,yx),F(2,0)则有11620,1162022222121yxyx两式作差有016))((20))((21212121yyyyxxxx04500kyx(1)F(2,0)为三角形重心,所以由2321xx,得30x,由03421yy得20y,代入(1)得56k直线BC的方程为02856yx2)由AB⊥AC得016)(14212121yyyyxx(2)设直线BC方程为8054,22yxbkxy代入,得080510)54(222bbkxxk2215410kkbxx,222154805kbxx2222122154804,548kkbyykkyy代入(2)式得0541632922kbb,解得)(4舍b或94b直线过定点(0,)94,设D(x,y),则1494xyxy,即016329922yxy所以所求点D的轨迹方程是)4()920()916(222yyx。4、设而不求法例2、如图,已知梯形ABCD中CDAB2,点E分有向线段AC所成的比为,双曲线过C、D、E三点,且以A、B为焦点当4332时,求双曲线离心率e的取值范围。分析:本小题主要考查坐标法、定比分点坐标公式、双曲线的概念和性质,推理、运算能力和综合运用数学知识解决问题的能力。建立直角坐标系xOy,如图,若设Chc,2,代入12222byax,求得h,进而求得,,EExy再代入12222byax,建立目标函数(,,,)0fabc,整理(,)0fe,此运算量可见是难上加难.我们对h可采取设而不求的解题策略,建立目标函数(,,,)0fabc,整理(,)0fe,化繁为简.解法一:如图,以AB为垂直平分线为y轴,直线AB为x轴,建立直角坐标系xOy,则CD⊥y轴因为双曲线经过点C、D,且以A、B为焦点,由双曲线的对称性知C、D关于y轴对称依题意,记A0,c,Chc,2,E00,yx,其中||21ABc为双曲线的半焦距,h是梯形的...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

圆锥曲线解题方法技巧归纳(整理)

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部